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Abstract  

Modern simulations increasingly require the display of very large, uniquely 

textured worlds at interactive rates. In large outdoor environments and also 

high detail indoor environments, like those displayed in the computer game 

RAGE, the unique texture detail requires significant storage and bandwidth. 

Virtual textures reduce the cost of unique texture data by providing a sparse 

representation which does not require all of the data to be present for 

rendering, while leaving the majority of the texture data in highly 

compressed form on secondary storage. Virtual textures not only provide for 

a reduction of memory requirements but also improved rendering 

performance through a reduction in both graphics driver and hardware state 

changes because many surfaces can use a single virtual texture without the 

need for per surface texture selection. Several practical examples are 

discussed to emphasize the challenges of implementing virtual textures in 

software without special graphics hardware support and viable solutions are 

presented. These include solutions for address translation, texture filtering, 

oversubscription, LOD snapping, compression, caching, and streaming.  
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1. Introduction 

In computer graphics, texture mapping is used to add surface detail to geometric primitives. Even 

though texture mapping enables efficient management and rendering of surface detail, unique 

texture data requires significant storage and bandwidth. Therefore, a small set of textures is often 

re-used and it is common practice to use tiling textures that can be repeated many times on a 

single surface. Multiple textures can also be blended together at run-time to composite a variety 

of detail from a small set of source textures. These can all be considered specialized forms of 

texture compression that place a significant burden on the content generation pipeline. By 

providing a sparse representation, a virtual texture significantly reduces the cost of unique 

texture data.  

A sparse representation of a texture describes a layout in memory that does not require all of the 

data to be present for rendering. In the context of a mip-mapped texture, a sparse representation 

can allow different parts of the image to be available at different resolutions. This is important 

because in any given rendered scene, only a sparse sampling of the data is used anyway, even if 

all the data is present. Exploiting this sparsity through a virtual texture involves a pool of 

physical texture pages and a page table that maps virtual addresses to physical ones, similar to a 

virtual memory system.  

A virtual texture, however, differs from other forms of virtual memory in two key ways. First, 

with a texture it is possible to fall back to slightly blurrier data without stalling execution. A 

standard virtual memory system must stop the executing process until the system loads in the 

requested data. Second, lossy compression of the data is perfectly acceptable for most uses. 

These two key differences make a virtual texture amenable to trade-offs in quality that do not 

sacrifice performance and allow a significant reduction in memory requirements.  

A virtual texture allows not only for a significant reduction in memory requirements but it also 

allows all surfaces to be drawn in a single batch of geometry. Different surfaces can use different 

parts of the same virtual texture and there is no need for per surface texture selection. When 

virtual textures are applied universally, geometry is typically only broken up into multiple 

batches for culling granularity. This can significantly improve the rendering performance 

because of the improved culling and the reduction in both graphics driver and hardware state 

changes. Virtual textures also make it possible to build uniquely textured static worlds with per 

texel pre-computed lighting stored directly in the texture data which can further reduce the 

number of rendering passes and state changes.  

Virtual textures provide significant benefits such as a reduction of memory requirements and 

improved rendering performance. However, implementing virtual textures in software, without 

special graphics hardware support, involves various challenges. This paper discusses these 

challenges and viable solutions are presented that trade performance, quality and memory 

requirements.  
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2. Previous Work  

For terrain rendering there are numerous approaches to managing very large texture data sets by 

adaptively selecting the texture level of detail (LOD) while selecting or constructing the 

geometry level of detail. Some of these approaches use pre-calculated geometry LODs with 

baked in texture LODs [1, 2, 3, 4], while others dynamically generate the geometry LOD and in 

the process assign different texture LODs [5, 6]. None of these approaches implement virtual 

textures through per fragment texture address translation. Instead, different texture coordinates 

are supplied with different pre-calculated versions of the geometry, or geometry is generated on 

the fly with new texture coordinates.  

The clip-map [7, 8, 9, 10, 11, 12] is one of the first effective schemes for virtual textures with per 

fragment texture address translation. The clip-map, introduced by Tanner et al. in 1998 [7], 

consist of a stack of images similar to a mip-map hierarchy. However, whereas mip-map levels 

cover the whole texture with images of increasing size, the clip-map uses fixed size levels that 

cover a decreasing area around a single focus point that is placed somewhere on the texture. 

Using a region of interest around a single focus point significantly simplifies the mapping of 

texture data to geometry and the texture address translation during rendering has minimal 

complexity. However, the single focus point of a clip-map limits this texture management 

scheme to environments with a natural spatial correlation between the texture data and the 

geometry, like for instance mostly flat contiguous terrain.  

Recent virtual texture systems are more flexible and mimic the virtual memory management of 

an operating system on modern CPUs [16, 17, 18, 19, 20, 21, 22, 23, 24]. Textures are divided 

into small pages that are automatically cached and loaded into video memory as required for 

rendering. These systems use real-time per fragment texture address translation through page 

tables and/or mapping textures. Because there is not necessarily a natural correlation between the 

geometry and texture pages, these virtual texture systems require feedback from the rendering 

pipeline to determine which pages need to be resident [13, 14, 15]. This paper describes the 

challenges of implementing this class of virtual texture systems in software without special 

graphics hardware support.  

There are also software systems for generic virtual memory management on graphics hardware 

like GLIFT [25]. Such systems do not automatically exploit the specific properties of virtual 

textures that make them amenable to trade-offs between quality and performance. However, a 

system like GLIFT can be used as a foundation to build a virtual texture system upon. Instead of 

using a more generalized sub-system like GLIFT, the focus here is on virtual texture systems that 

map directly to the underlying hardware.  
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3. Rendering With Software Virtual Textures  

3.1 Address Translation  

A virtual texture is divided into small pages that are loaded into a pool of resident physical pages 

as required for rendering. These small pages are square blocks of texels, typically on the order of 

128 x 128. The pool with physical pages is a fully resident texture that is logically subdivided 

into such square blocks of texels. While a virtual texture can be very large (say a million pages) 

and is never fully resident in video memory, the texture that holds the pool of physical pages is 

fully resident but much smaller (typically only 4096 x 4096 texels or 1024 pages). Virtual texture 

pages are mapped to physical texture pages, and during rendering virtual addresses need to be 

translated to physical ones.  

 

 

 

Figure 1: Scene with virtual textures applied to all 

geometry.  
Figure 2: Same scene with highlighted virtual texture 

pages. 

In its simplest form, the virtual to physical translation is equivalent to finding the desired level of 

detail (LOD) by using the virtual texture address to walk the quad-tree that represents the mip 

hierarchy of the currently resident texture pages. Every node in the quad-tree provides a scale 

and bias that will convert a virtual address inside a virtual page to a physical address inside a 

physical page. The scale is the ratio between the size of the virtual mip level and the size of the 

physical texture. The bias is the offset to the physical page in the physical texture, minus the 

scaled offset to the virtual page in the virtual mip level. While walking the quad-tree to find the 

desired LOD at a given virtual address, either the scale and bias for the desired LOD are found, 

or the quad-tree terminates early and the scale and bias at the final node are used for the address 

translation. In the latter case, the address translation falls back to a page from a coarser mip level 

because the texture page for the desired finer mip level is not yet available in the pool of physical 

pages. Figure 3 shows an overview of the virtual to physical address translation and the 

calculation of the scale and bias.  
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Figure 3: Virtual to physical address translation. 

The full calculation of the scale and bias (taking page borders into account) can be found in 

appendix A. Using only the quad-tree data structure with currently resident texture pages allows 

for a minimal memory page table, but it has the worst case access latency because it requires a 

dependent read for each finer level of detail accessed. Instead of walking the quad-tree, the 

address translation can be implemented in various ways that trade performance and memory.  

A straightforward approach to implementing the virtual to physical translation is looking up the 

scale and bias in a mip-mapped texture with one texel per virtual page. In effect this mip-mapped 

texture stores the complete quad-tree data structure with a node for every virtual texture page 

whether it is resident or not. A regular lookup into this page table texture allows the texture 

hardware to be used to compute the nearest texel of the nearest mip level that corresponds to the 

virtual texture page for the desired LOD at a given virtual address. The texture lookup is biased 

with the base-two logarithm of the page width to account for the size difference between the 

virtual texture and the page table texture. The scale and bias retrieved from this page table 

texture can be used directly to map a virtual address to a physical one. A texel of this texture will 

store a scale and bias for a texture page from a coarser mip if the desired finer mip is not yet 

available in the pool of physical pages.  

If the virtual and physical texture are both square, there only needs to be a single scale value for 

both axes. However, to map virtual pages to arbitrary physical pages, there need to be two bias 

values (S-bias and T-bias). The scale and bias need to be stored with at least 16 bits of precision 

to be able to support reasonably large virtual textures (>= 1024 x 1024 pages with borders). This 
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means that the scale and bias can be stored as 32-bit floating-point (FP32) but not 16-bit floating-

point (FP16) because there are not enough bits in the FP16 mantissa. The simplest 

implementation results from storing the three values (ST-scale, S-bias, T-bias) in a four 

component FP32 (FP32x4) texture. The implementation in a fragment program of the virtual to 

physical translation using such a FP32x4 page table texture is trivial and consists of no more than 

a texture lookup and a multiply-add as shown in appendix A.1. Unfortunately, for a reasonably 

large virtual texture the FP32x4 page table texture consumes a fair amount of memory. For 

instance, for a virtual texture with 1024 x 1024 virtual pages, the page table texture takes up 

21.33 MB of memory.  

To reduce the memory requirements, the page table can be split into two textures. The first 

texture is mip-mapped with one texel per virtual page. Once again a regular lookup into this 

texture allows the texture hardware to be used to compute the nearest texel of the nearest mip 

level that corresponds to the virtual texture page for the desired LOD at a given virtual address. 

Instead of storing a scale and bias, each 2-byte texel of this texture contains the (x,y) coordinates 

of the physical page to be used for the virtual page. A texel of this texture will point to a physical 

page from a coarser mip if the desired finer mip is not yet available. The second texture is a non-

mip-mapped FP32x4 texture with one texel per physical page. A texel from this texture contains 

the scale and bias (ST-scale, S-bias, T-bias) necessary to map a virtual texture coordinate to a 

physical texture coordinate for that page. The implementation in a fragment program of the 

virtual to physical translation using a page table and a separate mapping texture to store the scale 

and bias is shown in appendix A.2. This approach saves memory by storing the floating-point 

scale and bias in a much smaller (typically 32 x 32) texture with one texel per physical page, 

while allowing access to this texture at the cost of a fully resident much larger (typically 1024 x 

1024) texture with only two bytes per virtual page. This memory optimization costs the latency 

of a dependent texture read, but it saves 8x the memory compared to storing the floating-point 

scale and bias in a texture with one texel per virtual page. With only 2 bytes per virtual page and 

16 bytes per physical page, the page table textures consume about 2.66 MB of memory for a 

virtual texture with 1024 x 1024 pages.  

 

 

 

 

 

 

 

 

 

Figure 4: A scene with virtual textures applied 

to all geometry.  
Figure 5: Page table with 2 bytes per virtual page of the virtual 

texture applied to static geometry in the scene. 

On some graphics hardware fetching from a texture with more than 32 bits per texel is expensive 

and/or limits the number of fragments that can be processed in parallel. Instead of using a single 

FP32x4 mapping texture, the scale and bias can be stored in three separate single-component 
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FP32 textures: one for the ST-scale, one for the S-bias and one for the T-bias. The 

implementation in a fragment program using three FP32x1 textures to store the scale and bias is 

shown in appendix A.3.  

On some platforms the performance is limited by the number of textures used. Using three 

separate single-component FP32 textures may therefore not result in optimal performance. To 

reduce the number of bound textures, the scale and bias can be stored in two 16-bit per 

component fixed-point textures: one single-component texture to store the ST-scale and one two-

component texture to store the S-bias and T-bias. Some care is necessary to make good use of all 

the available bits in order to allow virtual to physical translations from very large virtual textures. 

The implementation using two 16-bit fixed-point mapping textures is shown in appendix A.4. 

The virtual to physical translation no longer consists of just texture lookups and a multiply-add 

to apply the scale and bias. Two additional multiplications and a subtract are necessary to first 

move the 16-bit fixed-point values into the appropriate range.  

Instead of storing a scale and bias in textures, the virtual to physical mapping can also be 

calculated in a fragment program based on the coordinates and mip level of a physical page. The 

coordinates and mip level of a physical page can be stored in a single mip-mapped texture which 

avoids the latency of a dependent texture read to fetch a scale and bias. Here also, a regular 

lookup into this texture allows the texture hardware to be used to compute the nearest texel of the 

nearest mip level that corresponds to the virtual texture page for the desired LOD at a given 

virtual address. The coordinates of the physical page retrieved from this texture are used to 

calculate the offset to the top-left corner of the physical page in the physical texture. To calculate 

the complete physical address, the offset within the virtual page needs to be scaled and added to 

the top-left corner of the physical page. This offset within the virtual page needs to be calculated 

for the correct mip level which is done by first multiplying the virtual texture coordinates with 

the width in pages of the physical page's mip level ( virtual pages wide / 2^mip ) and then taking 

the fraction. This fraction is scaled into the correct range before being added to the physical page 

offset.  

When using an 8-bit per component RGBA page table texture the physical page coordinates can 

be stored in the first two components. Instead of storing the mip level in one of the other 

components, the 16-bits of the last two components combined can be used to store the width in 

pages of the physical page's mip level. The 16 bits are enough to support very large virtual 

textures of 1024 x 1024 pages with over 10 mip levels. The implementation in a fragment 

program using an 8-bit per component RGBA texture is shown in appendix A.5. The 8-bit 

components are converted to the floating-point range [0, 1] in hardware before they become 

available in the fragment program. Unfortunately this conversion may be hardware specific. On 

some graphics hardware the 8-bit components are directly converted to FP32 through a division 

by 255. On other hardware the 8-bit components are first converted to FP16 and then to FP32. 

The calculation of the virtual to physical translation in the fragment program has to account for 

any hardware specific conversion of the texture data when converting the physical page 

coordinates and the width in pages of the physical page's mip level back to integer values. Using 

an 8-bit per component RGBA texture, the page table ends up consuming 5.33 MB of memory 

for a virtual texture with 1024 x 1024 pages.  
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To reduce the memory footprint the page table can be stored as a 5:6:5 RGB texture. The 

physical page coordinates are stored in the 5-bit components and the base-two logarithm of the 

width in pages of the physical page's mip level is stored in the 6-bit component. The exp2() 

function is used to calculate the actual width in pages of the physical page's mip level in the 

fragment program. The 5:6:5 values are converted to the floating-point range [0, 1] in hardware 

before they become available in the fragment program. Unfortunately, just like the 8-bit to 

floating-point conversion, this conversion is hardware specific as well. On some hardware, the 

5:6:5 values are first converted to 8-bits per component by replicating the high order bits into the 

low order bits. For instance, for a 5-bit value all bits are first copied to the most significant bits 

of the 8-bit value and then the most significant 3 bits are replicated to the least significant 3 bits 

of the 8-bit value. On some hardware, the 8-bit values are then converted to FP16 through a 

division with 255 before being converted to FP32, while on other hardware the 8-bit values are 

directly converted to FP32. On yet other hardware, the 5:6:5 values are converted directly to 

floating-point through bit replication without first going to an 8-bit value. The fragment program 

for the virtual to physical translation needs to take all these hardware differences into account. 

To complicate things further the exp2() function is no more than an approximation on some 

hardware even when the exponent is an exact integer. For instance, exp2( 10 ) may not be 

exactly 1024. As such, a tiny value is added to the exponent such that 2^exponent is always 

larger than 2^int(exponent) but never larger than 2^int(exponent) + 1. The floor() function is 

then used on the result of the exp2() function to get the exact integer power of two. The 

implementation in a fragment program using a 5:6:5 RGB page table can be found in appendix 

A.6.  

The performance of these different implementations of the virtual to physical translation varies 

per platform. The implementation using a single 8-bit per component RGBA page table is one of 

the fastest approaches on all platforms because it does not involve a dependent texture read and 

uses a fair trade between memory bandwidth and compute. Unfortunately, page table sizes add 

up, in particular if there are multiple large virtual textures active at the same time. Alternatively, 

the 5:6:5 RGB page table uses half the memory and requires less memory bandwidth at the cost 

of several fragment program instructions. On platforms where compute is costly compared to 

memory bandwidth and latency, the 8:8 page table with separate mapping textures can deliver 

optimal performance.  

The virtual to physical translation using a mip-mapped page table texture is a lot faster than 

using a quad-tree structure with a dependent read for each finer level of detail accessed. 

However, compared to storing only the quad-tree, page table updates are much more expensive 

when using a mip-mapped page table texture. Consider when the first page of a virtual texture is 

mapped: the entire page table texture must be populated with a single texel value. When the next 

finer page is mapped in, one quarter of the texels must be updated, and so on. Fortunately large 

page table updates happen infrequently.  

Instead of using a quad-tree page table or a page table texture, a hash table can be used to 

provide a middle ground between access latency, memory footprint and compute. Only resident 

texture pages are stored in the hash table. A virtual page is found in the hash table with a hash 

key calculated from the mip level and (x,y) coordinates of the page. A good hash key function in 

combination with a small hash table that, for instance, is only twice as large as the number of 
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physical pages (say 2048 entries), typically results in very few collisions, allowing the lookup of 

most pages with a single memory access. The spatial index of a page in the virtual texture quad-

tree, modulo the hash table size can be used as a hash key. However, better results are achieved 

if the (x,y) coordinates of a virtual page are first remapped within the mip level such that pages 

that are close to each other in the quad-tree do not map to the same hash table entry.  

The hash table does not provide an automatic mechanism to fall back to a texture page from a 

coarser mip if a desired finer mip is not yet available in the pool of physical pages. Instead, when 

the desired page is not found in the hash table, the hash key for the next coarser page will have to 

be calculated in an attempt to fetch the next coarser page from the hash table. If the next coarser 

page is also not resident this process will have to be repeated until a valid page is found. On 

average, when most desired pages are resident, the hash table access latency is much better than 

a quad-tree page table. However, in the worst case, when few or no pages are resident, multiple 

hash keys have to be calculated and multiple memory accesses are required. The memory 

footprint of a hash table is small and only a small factor larger than a quad-tree page table. Even 

though a hash table provides an interesting middle ground between a quad-tree page table and a 

page table texture, on most hardware the direct access of a page table texture is preferred and 

with only 2 bytes per virtual page, the memory requirements of a page table texture are usually 

acceptable.  

3.2 Texture Filtering  

One of the unfortunate complexities of virtual textures without special graphics hardware support 

is that the texture unit, being unaware of the actual texture pages, cannot filter across page 

boundaries. Texture pages that are adjacent in virtual texture space do not necessarily map to 

physical pages that are next to each other, let alone close to each other in the physical texture. 

Instead of using the filter hardware, it is too costly to implement texture filtering completely in a 

fragment program.  

It is possible to use bi-linear filtering while forcing edge texels to be equal at the expense of 

some fragment program instructions. However, addresses that are between physical pages cannot 

be used which means that such "clamped" pages really have an effective width that is one texel 

less than the physical page width, with a half-texel no-man's-land around the perimeter. These 

clamped pages also have a fundamental flaw in texel shifting at mip level transitions that show 

up as objectionable seams. In order to properly support hardware bi-linear filtering, each 

physical texture page must have a border of texels around it.  

Implementations of virtual textures in software, without special graphics hardware support, are 

also not able to transparently support tri-linear filtering. A straightforward way to allow for 

hardware accelerated tri-linear filtering is to store one mip level for the texture with physical 

pages but this comes at the expense of a 25% increase in memory footprint and an increase in 

compute and bandwidth to populate this mip level. When using a block compressed physical 

texture there is also not necessarily a smooth transition from the coarser virtual mip to the 

coarser physical mip. For instance, if texture pages have a 4-texel border then the first mip level 

of the physical texture is populated with pages that are half the size with a 2-texel border and a 2-

texel offset which results in different block compression artifacts compared to the virtual mip.  
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Another way to implement tri-linear filtering is to access two virtual pages during rendering, 

determining the LOD fraction between them and computing the weighted average. Even with a 

mip-mapped page table texture implementation, the cost of a single virtual to physical translation 

carries significant overhead. It is interesting to note however, that some of the overhead of a 

second translation is hidden behind the cost of the first one. Nevertheless tri-linear filtering using 

two virtual to physical translations is typically still fairly expensive.  

To improve the visual fidelity, anisotropic filtering tends to be more important than tri-linear 

filtering. Hardware accelerated anisotropic filtering can be supported if the page border is wider 

than 1 texel. As such, a 4-texel border is typically used around each physical page. In other 

words, if a page is 128 x 128 texels then the payload is 120 x 120 texels surrounded by a 4-texel 

border with texels that are replicated from adjacent virtual pages. The 4-texel border maps well 

to the 4x4 block size of a hardware supported compression format (DXT, S3TC, ETC, etc.) and 

allows for reasonable quality anisotropic filtering with a maximum anisotropy up to 8.  

Ideally, the virtual texture coordinate is used to compute the anisotropic footprint and the 

physical pages are sampled with a texture fetch that explicitly specifies the derivatives. This 

requires scaling the derivatives to factor in the different scales that texture coordinates will have 

when they come from different mip levels. The scale factor is the ratio between the size of the 

virtual mip level and the size of the physical texture. When using a virtual to physical translation 

with one or more mapping textures, this scale factor has to be stored separately using an 

additional texture component. In the case of a FP32x4 mapping texture, the scale factor can be 

stored in the unused component. When using three FP32x1 or two 16-bit fixed-point mapping 

textures, an additional texture or texture component has to be added to store the scale factor. No 

additional data needs to be stored when the virtual to physical mapping is calculated in the 

fragment program using either an 8:8:8:8 or 5:6:5 page table texture. In these cases, the sale 

factor can be calculated in the fragment program as shown in appendix A.5 and A.6.  

Calculating and scaling the derivatives adds fragment program complexity and on various 

hardware a texture fetch with explicit derivatives is more expensive which may make this 

solution unattractive from a performance standpoint. Instead, hardware accelerated anisotropy on 

the physical texture coordinate with implicitly computed derivatives can be used. This results in 

erroneous anisotropic footprints for quad-fragments that cross virtual page boundaries because 

the physical texture space is discontinuous at page boundaries. Texture pages that are adjacent in 

virtual texture space do not necessarily map to physical pages that are next to each other, let 

alone close to each other. However, even though for virtual page crossings the derivatives may 

become way too large with an arbitrary direction, the anisotropic footprint is still bounded to a 

single physical texture page when the maximum anisotropy is less-equal to twice the border 

width. The erroneous footprints at page boundaries are a reasonable performance vs. quality 

trade-off on most hardware. While the artifacts increase with the maximum anisotropy, even 

with higher anisotropy settings the quality is actually surprisingly good and the erroneous 

footprints are only noticeable under significant magnification.  

Unfortunately, when using hardware accelerated anisotropy on the physical texture coordinate on 

older ATI/AMD hardware, the sample positions at virtual page crossings chosen by the hardware 

are outside the page boundaries and produce objectionable artifacts despite a maximum 
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anisotropy setting less-equal to twice the page border width. On this hardware, anisotropic 

filtering with a non-mip-mapped physical texture walks through texture space assuming an ideal 

mip level instead of the actual mip level and as a result the steps can be way too large for the 

case of virtual page crossings. Fortunately, on most ATI/AMD hardware explicitly calculating 

the derivatives, scaling them and using a texture fetch with explicit derivatives has good 

performance and this is the preferred method anyway.  

Normally, when fetching texture data from a mip-mapped texture, the anisotropic footprint is 

sampled using texels from multiple mip levels. Even when an additional mip level is provided 

for the physical texture to allow tri-linear filtering, the page table texture is point-sampled using 

a regular texture lookup unaware of the anisotropic texture fetch that follows. The page table 

texture must be point-sampled to retrieve individual page mappings without mangling the data 

by blending between adjacent but independent page mappings. Using the texture hardware to 

point-sample a page table texture does not necessarily result in a mapping to a physical texture 

page with the appropriate texture detail for the anisotropic texture fetch that follows. Without 

any adjustments, the page table lookup returns a mapping to a physical texture page that is 

typically too coarse and provides too little detail. To provide additional texture detail for the 

anisotropic texture fetch, the page table lookup can be biased with the negative base-two 

logarithm of the maximum anisotropy. This allows the anisotropic texture fetch to work with 

additional texture detail on surfaces at an oblique angle to the viewer where the sampled 

footprint is maximized (anisotropic). However, this can cause noticeable shimmering or aliasing 

on surfaces that are orthogonal to the view direction where the sampled footprint is minimal 

(isotropic). To improve the quality, the texture LOD of the page table texture lookup can be 

calculated in the fragment program based on the anisotropy. The calculated LOD can then be 

explicitly passed to the page table texture lookup. The calculation of the texture LOD is shown 

below.  

  

const float maxAniso = 4; 

const float maxAnisoLog2 = log2( maxAniso ); 

const float virtPagesWide = 1024; 

const float pageWidth = 128; 

const float pageBorder = 4; 

const float virtTexelsWide = virtPagesWide * ( pageWidth - 2 * pageBorder ); 

 

float2 texcoords = virtCoords.xy * virtTexelsWide; 

 

float2 dx = ddx( texcoords ); 

float2 dy = ddy( texcoords ); 

 

float px = dot( dx, dx ); 

float py = dot( dy, dy ); 

 

float maxLod = 0.5 * log2( max( px, py ) );  // log2(sqrt()) = 0.5*log2() 

float minLod = 0.5 * log2( min( px, py ) ); 

 

float anisoLOD = maxLod - min( maxLod - minLod, maxAnisoLog2 ); 

 

Obviously calculating the texture LOD adds significant computational complexity to the 

fragment program. It is interesting to note, however, that compared to using a constant LOD 

bias, some performance is gained back due to better texture cache usage. For surfaces that are 

mostly orthogonal to the view direction, the calculated LOD causes a mip level to be selected 
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where the texture samples are closer to each other. Nevertheless selecting a mip level based on 

the anisotropic footprint may be unattractive from a performance standpoint because of the 

additional fragment program complexity. Instead, using a maximum anisotropy of 4 and a page 

table texture lookup biased with a constant negative 2 typically results in a reasonable trade 

between quality and performance where surfaces at an oblique angle to the viewer are 

significantly sharper while the shimmering or aliasing that appears on surfaces orthogonal to the 

view direction is usually not objectionable.  

3.3 Rendering from Multiple Virtual Addresses  

There is often a desire to supply different texture data for the same model to customize it or to 

indicate damage, teams, etc. In conventional API usage, one would do this with a separate set of 

skin textures or a texture array containing all possible skins. With virtual textures, skins can 

allocate their own unique space within a single large virtual texture, and supply a base texture 

(s,t) address per skin that is used to offset the virtual texture coordinates in a vertex program. 

Damage skins require multiple virtual to physical translations per fragment in order to blend 

from multiple texture sources. This turns out to be less expensive than one might expect because 

the cost of the second translation hides nicely behind the first. Modest use of two virtual to 

physical translations per fragment can be very effective to display localized damage while 

maintaining performance.  

3.4 Feedback Rendering  

While a sparse representation makes it possible to render with a partially resident texture, 

feedback is necessary for determining which parts of the texture need to be resident. Texture 

feedback is rendered to a separate buffer that, for the virtual texture pages used in the current 

scene, stores the virtual page coordinates (x,y), desired mip level, and virtual texture ID (to allow 

multiple virtual textures). This information is then used to make those texture pages resident that 

are needed to render the scene. The feedback can be rendered in a separate rendering pass or to 

an additional render target during an existing rendering pass. An advantage of rendering the 

feedback is that the feedback is properly depth tested, so the virtual texture pipeline is not 

stressed with requests for texture pages that are ultimately invisible. When a separate rendering 

pass is used it is fine for the feedback to be rendered at a significantly lower resolution (say 10x 

smaller). A fragment program that can be used to render to a feedback buffer is shown in 

appendix B.  
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Figure 6: Scene with virtual textures applied to all 

geometry.  
Figure 7: Feedback buffer for the same scene. 

Only the texture coordinates and not the actual texture data are used in the feedback rendering 

pass which means that alpha tested and transparent surfaces are considered completely opaque. 

As a matter of fact it is generally not possible to use alpha tested or transparent virtual texture 

data to generate feedback because this texture data may not be resident and proper feedback has 

to be generated first before such texture data becomes resident.  

To properly pull in texture data that is visible through an alpha tested or transparent surface, any 

surfaces that are not completely opaque could be rendered randomly every so many frames to the 

feedback buffer. Similarly, when a surface uses multiple virtual texture sources, these sources 

could be alternated every render frame such that over time all the necessary texture data is pulled 

in. Unfortunately, this has the tendency to destabilize the virtual texture pipeline because a 

different set of texture pages is requested every frame even when the scene does not change. The 

pages that are requested one frame may end up replacing the pages that were requested for the 

same surface the previous frame. As a result, the system may never stabilize and pages may be 

continuously replaced without ever pulling in the highest detail texture data necessary for 

rendering the scene.  

When a surface uses multiple virtual texture sources, one solution is to alternate the different 

texture sources in screen space, where every other pixel of the feedback buffer pulls texture data 

from a different source. When rendering from two different sources, this results in a simple 

checkerboard pattern but more complex patterns can be used when rendering from more than two 

sources. This approach may increase the chance of undersampling the feedback when a surface is 

very small and covers very few pixels of a relatively small feedback buffer, but this turns out not 

to be a noticeable problem in practice.  

A similar approach can be used for alpha tested or transparent surfaces where every other pixel 

of the feedback buffer covered by such a surface is considered either fully transparent or fully 

opaque. When a simple checkerboard pattern is used to alternate between fully transparent and 

fully opaque, not all the texture data may be pulled in for a scene with multiple layers of alpha 

tested or transparent surfaces stacked on top of each other. Using more complex patterns and a 

different pattern per alpha tested or transparent surface can alleviate this problem. This is similar 
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to rendering with screen-door transparency or alpha-to-coverage which on some hardware could 

actually be used for this purpose if the 'alpha channel' of the feedback buffer is not used to store 

feedback data.  

On newer graphics hardware that supports atomic operations it is possible to implement per pixel 

linked lists. Such linked lists are also known as structured append and consume buffers. Being 

able to create linked lists allows an arbitrary number of data elements to be tracked per pixel. 

Virtual texture feedback data for each layer of transparency or each different virtual texture 

source used per surface can simply be appended to the chain of data stored per pixel. At the cost 

of some complexity, this approach reduces the chance of undersampling the feedback when an 

alpha-tested or transparent surface is very small and covers very few pixels of a relatively small 

feedback buffer.  

The results of the feedback rendering pass are analyzed in a separate process. This process could 

stall and wait for the feedback render but it is typically fine to use a frame old data and incur a 

frame of latency. The feedback analysis walks the screen buffer and condenses the page 

information into a list with unique pages. Effectively, the feedback analysis creates the quad-tree 

that represents the mip-map hierarchy with all the pages that need to be resident to properly 

render the current scene. The analysis process sorts the pages on priority. First, the priority is set 

such that the farther away the desired mip level is from the actual resident mip level, the higher 

the priority. Second, the priority increases as the number of samples for a particular page 

increases in the feedback buffer. The virtual texture system uses the sorted pages to maintain 

residency of already resident visible pages and to first stream in the non-resident pages that will 

most improve the visual quality of the currently rendered scene.  

3.5 Oversubscription  

In any system with virtual storage, the condition can arise where physical storage is insufficient 

to hold the working set, and thrashing occurs. This is a case where a virtual texture system can 

cope without losing performance. The number of resident pages that were seen in the previous 

frame's feedback is tracked. If that number is greater than a high water mark, the system is 

considered oversubscribed and the LOD bias used when generating feedback, is incremented. If 

the number is less than a low water mark, the system is considered undersubscribed and the LOD 

bias used when generating feedback is decremented. The dynamic feedback LOD bias is always 

clamped to avoid it ever becoming negative. This mechanism backs off of detail, without 

thrashing, for views where enough detail cannot be supplied, but then adds the detail back as 

soon as the system is not strained.  
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Figure 8: Physical texture with 32 x 32 pages. 

Undersubscribed system but already at full resolution.  
Figure 9: Physical texture with 8 x 8 pages. 

Oversubscribed system with everything blurry. 

When rendering from mip-mapped textures there should, in theory, not be a need for more texels 

than about 4 times the screen resolution. However, even when there are enough physical pages to 

hold more than 4 times the screen resolution (taking page borders into account), the system may 

still end up in an oversubscribed state. The reason for this is a combination of texture page sizes 

and the way geometry is unwrapped onto the virtual texture. Objects that are relatively small or 

thin in texture space and have multiple sides that face in different directions can cause significant 

overhead when all sides are unwrapped onto the same texture page. Only a few sides are ever 

visible at the same time while such objects require whole texture pages to be pulled in where 

most of the texels on the pages may not be visible. Using smaller texture pages may reduce the 

number of texels that are pulled in but not needed. However, smaller pages waste relatively more 

space for borders and more memory is needed for larger page tables. Using pages of 128 x 128 

texels is usually a reasonable trade.  

3.6 LOD Snapping / Texture Popping  

It will happen sometimes that, despite all efforts, a significant latency will be incurred between 

the time that a texture page is needed and the time that the data for it is available. This can result 

in an unpleasant "pop" when the desired LOD for a page is off by more than one level and the 

right LOD suddenly becomes available. The straightforward approach, if tri-linear filtering with 

two virtual to physical translations were employed, would be to include some delay in the 

transition from coarser to finer mip level when the desired level is not sufficiently close to the 

currently displayed level. The delay could be encoded into the page table or mapping textures. 

When bi-linear or anisotropic filtering with a single mip level is used, a different approach is 

required. Instead of using tri-linear filtering during rendering, the physical pages can be 

continuously updated with some sort of blend between the coarser and finer mip.  

Waiting until the finer mip level becomes available and phasing it in by starting with an 

upsampled version of the coarser mip level seems like a plausible solution. However, this does 

not completely remove texture popping because the sample positions change suddenly when the 

upsampled image is mapped. It is not possible to create a texture that is twice the resolution of 

another texture that when both rendered with bi-linear magnification between texel centers 
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produce the exact same bi-linear filter patterns. Bi-linear magnification effectively creates a 

triangle wave pattern between texel centers that cannot be replicated with a texture that is twice 

the resolution and also rendered with bi-linear magnification. The texture of twice the resolution 

typically shows a pattern with the triangle wave tops and bottoms cut off or some other 

approximation. The result is a visible "pop" from the bi-linearly magnified coarser mip to the 

finer mip created through upsampling the coarser mip.  

 

Figure 10: Bi-linear filtering between texel centers at resolution N and 2x N. 

The better solution is to create a physical page for the finer mip from a coarser mip through 

upsampling before the coarser mip is magnified. The finer mip created from the coarser mip 

through upsampling will come in gradually as the viewpoint approaches the textured surface. 

Without visibly popping, the finer mip that was created from the coarser mip through 

upsampling can then be blended towards the actual finer mip when it becomes available. This 

will not have the abrupt transition because only the texel colors change, not the location of the 

samples.  

Various interesting algorithms can be used to create a finer mip level by upsampling a coarser 

mip. For instance, a straightforward bi-cubic filter can be used. However, more complicated edge 

enhancing filters can be used as well. Creating finer mips through upsampling as soon as they are 

desired for rendering can also be used to create interesting detail if there is no original texture 

content available [35].  
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4. Storage & Streaming  

4.1 Storage & Compression  

To accommodate for universally applied virtual textures, 3 physical page textures are used that 

store the same physical pages but different data. These 3 textures store a total of 10 channels per 

texel. There is one texture that stores a diffuse map using the YCoCg color space which is 

converted back to RGB during rendering in the fragment program. There is also one texture that 

stores the X and Y components of a tangent space normal map where the Z component of a 

normal is derived in the fragment program during rendering. A power map is stored in one of the 

channels of the same texture. Finally, there is one texture that stores a specular map, either as 

monochrome or RGB color. This texture also stores a 1-bit alpha channel (cover mask).  

The physical textures in video memory can be stored uncompressed or DXT compressed [30, 

31]. DXT compression is desired to reduce video memory usage and bandwidth requirements 

during rendering. Three DXT compressed textures are used to store the physical page textures: 

one DXT1 for the specular map with alpha [32], one DXT5 for the YCoCg diffuse map [33], and 

one DXT5 for the tangent space normal map [34] and the power map. Uncompressed, each 

physical page consumes 192 kB, while compressed to DXT format a physical page takes up 40 

kB.  

 

Figure 11: Virtual texture channel layout. 

Pages on disk can be stored uncompressed, DXT compressed or in a variable bit rate 

compression format such as a JPEG-like DCT based format [27] or HD-Photo [28] / JPEG-XR 

[29]. High compression ratios are necessary to be able to store very large uniquely textured 

worlds on the limited storage space available on optical disks like a DVD. High compression 
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ratios are also desired to reduce the bandwidth requirements for streaming the texture data off of 

slow storage devices. As such, a variable bit rate compression format is used to store the texture 

pages on disk which reduces most texture pages to between 1 and 6 kB.  

With a 4-texel inset border for texture filtering and a physical page size of 128 x 128 texels this 

leaves only 120 x 120 texels worth of payload per page. As such, the border required for proper 

texture filtering winds up costing approximately 12% in additional texels. The border texels need 

not be stored on disk, but as a practical matter, it is far less complicated to have pages be fully 

independent and actually store the additional 12% texels on disk.  

4.2 Improving Compression Ratios  

Before the texture data is compressed to disk, it can be processed in several ways to improve the 

compression ratio. For instance, the diffuse map may be sub-sampled to 4:2:0 YCoCg based on 

the compression algorithm used. Similarly the specular map can be either converted to 

monochrome if there is no significant color information, or the YCoCg color space can be used 

with 4:2:0 sub-sampling.  

Additional savings are possible when using a pre-computed lighting solution with an 

approximation for real-time specular reflection. For instance, an off-line radiosity based global 

illumination algorithm can be used to calculate the static lighting in the environment where only 

the specular reflections are calculated real-time using some approximation. For such an 

approximation to look right, the specular map is downscaled by the (off-line calculated) shadow 

to reduce specular reflections in shadowed areas. This reduces the dynamic range of the specular 

map in shadowed areas and improves the compression ratio. Sometimes specular map texel 

values can be omitted completely. If the incoming light at a unique texel in the environment is 

almost the same from all directions (same color and intensity) then a constant specular 

contribution can be moved to the pre-lit "diffuse" map and the specular values for the texel need 

not be stored.  

When pre-computed lighting is used, the normal X and Y components can also be scaled with 

the specular intensity to improve the compression ratio by reducing the dynamic range. After all, 

when using pre-computed lighting the surface bumpiness is, for the most part, already baked into 

the diffuse map, and otherwise only visible when there are dynamic specular reflections. 

Reducing the magnitude of the X and Y components causes the run-time derived Z component to 

increase in magnitude which means the tangent space normal will converge to pointing straight 

out of a surface such that the perceived bumpiness decreases as the specular reflection decreases. 

Reducing the perceived bumpiness based on the specular lighting comes at a slight loss in quality 

but the loss in quality is usually small while the storage savings are significant.  

4.3 Visibility-based Optimizations  

Large virtual textures reduce the cost of unique texture data but in a very large virtual world 

there will often be many areas that are inaccessible to the viewer, or that can be viewed only 

from a distance. In particular in a computer game there will be many surfaces that can never be 

seen up close. For this reason it can be very useful to perform an off-line brute force analysis of 
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scene visibility, capturing omni-directional virtual texture feedback data and marking can-be-

seen data for all possible viewer positions. In a computer game this brute force visibility 

determination can, for instance, be based on a sampling of floor surfaces of the player's 

navigation space (configuration space).  

First of all it is useful to capture per-texel visibility. To reduce storage requirements the visibility 

can be tracked as a bit per 4x4 texels in the virtual texture. This visibility information can then be 

used to eliminate whole pages that can never be seen. In other words, a virtual texture is not only 

sparsely resident in video memory, the virtual texture may also be sparsely populated with 

source data. The visibility information can furthermore be used to blur out invisible portions of 

pages in order to improve their compression.  

Secondly, data can be collected to optimize texel area allocation for bits of geometry that are 

contiguous in texture space, often called "charts" in an "atlas" in literature. Instead of capturing 

per-texel visibility, the chart ID, number of samples seen, minimum derivative, minimum ratio 

and maximum ratio of the derivatives are recorded. This information is then used to scale objects 

in texture space such that all objects take up a reasonable amount of space on the virtual texture, 

not just based on the number of texels per world unit but also based on visibility. This not only 

avoids having a soda can with a 20x higher texel density than the counter that it sits on, but also 

allows scaling down charts on the virtual texture for objects that can never be seen close up. 

When the very large texture atlas is first built, there is no visibility-based information available 

to determine how much texture space charts should take up, and some estimates based on the 

world-space area are used for each chart. After finest-LOD data is collected on a per-chart basis, 

the atlas is re-optimized based on the additional information.  

4.4 Layout and Locality  

The layout of texture data on virtual textures is of critical importance for a real-time application, 

because seek times of optical disks are on the order of 100+ ms and similar latencies are to be 

expected when streaming texture data over the Internet. On systems with a local hard disk, the 

danger of going without needed data for long periods of time can be dramatically reduced. 

Unfortunately, not all systems have a hard disk, or a limited amount of hard disk space is 

available to cache texture data.  

There are several metrics that are important when optimizing the layout of virtual textures. It is 

important to have a consistent texel density such that virtual texture space is not wasted for LOD 

texels that are never visible. As described in the previous section, the texel allocation of 

geometry "charts" can be optimized based on brute-force collected visibility information.  

The charts are then placed on the virtual texture such that the least amount of space is wasted. 

The charts may have odd shapes that only fit well together in certain relative positions. The 

orientation of charts can also be changed to where they fit better. However, when virtual 

addressing is performed with only a scale and bias this requires changing the texture coordinates 

on the geometry to account for orientation changes. Rotating charts also makes the optimization 

process significantly more complicated.  
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While minimizing the amount of wasted space is important, it is also important to optimize the 

locality of "charts" on the virtual texture such that any rendered scene uses the least number of 

texture pages. This is a hard optimization problem and sometimes conflicting with minimizing 

the wasted space on a virtual texture. Optimizing for both locality and the least amount of wasted 

space is a combination of a mesh parameterization and a bin-packing problem which is NP-hard. 

A reasonable solution can be found by first spatially sorting the charts with 3D Binary Space 

Partitioning and then walking the tree breath first while allocating 2D texture space with a space 

filling curve for 2D locality.  

Once all charts are optimally placed on a virtual texture, it is important to optimize for locality of 

texture pages on optical disks such that any rendered scene requires the least amount of seeking 

when streaming in the required texture data. Previous work [26] suggests laying out pages on 

disk in quad-tree order possibly interleaving multiple mip levels. This works well for a mostly 

flat contiguous terrain. However, the situation is vastly more complex for virtual textures that are 

applied to arbitrary 3D environments.  

4.5 Streaming and Caching  

Caches can be used to significantly reduce the latency when streaming frequently used texture 

pages. When used to store recently seen texture pages, a cache in system memory is very 

effective in reducing the latency for updating physical pages with texture data from previously 

viewed areas, for instance when the view suddenly rotates back to where the viewer came from. 

When a texture page is streamed from an optical disk to system memory it can be written back to 

a hard disk cache such that future access is both faster and does not suffer as much from very 

long seek times. For high performance streaming, multiple software threads are typically used to 

retrieve texture pages from relatively slow storage devices like hard disks or optical disks, where 

a separate thread is implemented for each storage device.  

With compression ratios in the 10:1 up to 20:1 range between variable bit rate compression and 

DXT fixed block compression, it is important to keep the data fully compressed for as long as 

possible to make optimal use of the available memory. Texture data is stored in 4 distinct 

locations: optical disk, hard disk, system memory, and physical page textures in video memory. 

The data remains compressed using a variable bit rate compression format in all the cache levels 

except the physical page textures.  

Like all virtual memory systems, a virtual texture system can have memory areas that are 

"pinned down", i.e. texture pages that are always resident and cannot be replaced. For instance, 

the texture page that represents the coarsest mip level of a virtual texture is usually locked in the 

physical page textures to make sure there is always some texture data to fall back to when the 

view point suddenly changes to a scene with all new texture data.  
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5. Physical Page Updates  

5.1 Pipeline Overview  

Figure 12 shows an overview of the pipeline for physical page updates. Texture feedback for a 

scene is rendered to a small screen buffer. The color values of this screen buffer are used to store 

the virtual texture pages for the pixels of the currently rendered scene. From this buffer the 

feedback analysis creates a sorted list with texture pages that need to be resident. The sorted 

pages from the feedback analysis are used to first update the non-resident pages that will most 

improve the visual quality of the currently rendered scene. Residency is maintained for visible 

pages that are already present in the physical textures.  

 

Figure 12: Physical page update pipeline. 

For each sorted page, the system tries to fetch the compressed texture data from cache. The cache 

returns the compressed texture data in case of a cache hit and the cache schedules misses to load 

in the background. For a texture page that has compressed texture data available, the system 

allocates a new physical page. Before using the new physical page it is unmapped, to make sure 

the GPU stops using the page and drops down to a coarser parent page. The compressed texture 

page is then transcoded such that it can be used for rendering on the GPU. Only after transcoding 

the full texture page it is mapped such that the GPU will start rendering from it.  

5.2 Replacement Policy  

When a new physical page needs to be allocated to store a requested virtual page, all the physical 

pages are sorted based on priority and the physical page with the highest priority is used for 

replacement. The priority is first based on the LOD level of the page such that finer mips will be 

replaced first. This means that the quad-tree that represents the mip-hierarchy with resident pages 

gradually changes structure by removing and adding leaf nodes. Next, the page priority for 

replacement increases as the number of rendered frames increases since the page was last used. 

In other words, the finest mip level pages are replaced with a least recently used (LRU) 

replacement policy.  
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5.3 Transcode  

Variable bit rate compression with very high compression ratios is used to store very large 

uniquely textured worlds on the limited storage afforded by optical disks, and also to reduce 

bandwidth requirements when streaming texture data from optical disks. Fixed bit rate DXT 

compressed textures are used on the GPU for their memory bandwidth and footprint benefits as 

well. When a new texture page is streamed in from disk or fetched from cache it has to be 

transcoded to DXT format from a JPEG-like format or from HD-Photo / JPEG-XR. This 

transcode process is a significant computational load and is performed in parallel through a 

parallel job processing system that offloads the jobs to whatever processors are available and 

suitable to the task. To improve load balance two jobs are added for each page that needs to be 

transcoded where each job transcodes part of the page data. During normal operation about 8 to 

16 pages are transcoded per render frame which results in 16 to 32 jobs. When transcoding 16 

pages per frame at 60 Hz with 128 x 128 texels per page, this results in a throughput of about 15 

MegaTexels / second (MT/s). On systems with direct access to texture memory the transcode 

jobs can write the DXT compressed texture blocks directly to video memory.  

5.4 Asynchronous Updates  

On systems with direct access to texture memory, the paging system operates asynchronously to 

the GPU. Every frame, the system determines whether or not more texture pages need to be 

made available and the pages that will be reused are immediately unmapped. This causes the 

GPU to begin using the coarser parent page. The page's texels are not overwritten until the page 

has been unmapped and the new page is not mapped until all its texels are present. This process 

ensures that even though page tables and physical pages are updated continuously and 

asynchronously, the consistency of the virtual texture is maintained. There is the danger that the 

texture caches are not coherent with texture memory, but in practice, operations that flush or 

invalidate the texture cache occur often enough that erroneous behavior is never observed.  
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6. Results  

6.1 Address Translation  

The virtual to physical translation performance has been measured on several platforms using the 

fragment program shown in appendix C. For this performance test, a single screen aligned quad 

is rendered with 100 resident texture pages that cover the whole screen at a resolution of 1280 x 

720.  

Table 1: Virtual to physical translation performance. 

  page table / mapping 

texture formats   
  page table size for   

  1024x1024 pages   
  ATI Radeon 

X1900   
  NVIDIA GeForce 

7800   
  NVIDIA GeForce 

8800 Ultra   
8:8 + FP32x4 2.66 MB   1.52 ms (1.20 ms) 1.30 ms 0.32 ms 

8:8 + 3 x FP32x1 2.66 MB   1.35 ms (1.32 ms) 0.94 ms 0.37 ms 

8:8 + UINT16x1 + UINT16x2 2.66 MB   1.44 ms (1.15 ms) 0.91 ms 0.32 ms 

8:8:8:8 5.33 MB   1.08 ms (0.95 ms) 0.91 ms 0.26 ms 

5:6:5 2.66 MB   1.08 ms (1.00 ms) 1.00 ms 0.29 ms 

On older ATI/AMD hardware the virtual texture coordinate is used to compute the anisotropic 

footprint and a texture fetch with explicit derivatives is used. This is necessary to avoid 

objectionable artifacts that appear when hardware accelerated anisotropy on the physical texture 

coordinate with implicitly computed derivatives is used. The performance on ATI/AMD 

hardware using implicitly computed derivatives is shown between parentheses in table 1 for 

comparison.  

6.2 Page Table Updates  

A page table update consists of a partial page table texture update and possibly a single texel 

update in any mapping textures that are used. Updating mapping textures is no more than a 

trivial single texel write which is not very expensive. However, page table updates can be much 

more costly based on the virtual page that is being mapped. When a virtual page is mapped, the 

page table texel from the mip level that corresponds to the virtual page and its mip level is 

updated first. Next, power of two square areas of texels are updated in any finer mip levels of the 

page table texture that correspond to virtual pages that store finer image detail for the virtual 

page that is mapped. For instance when the very first coarsest virtual texture page is mapped in, 

all texels in the complete mip-map hierarchy of the page table are set to the same value. When 

the next finer page is mapped in, one quarter of the texels must be updated, and so on.  

The performance of these updates is proportional to the number of texels written to the square 

page table texture areas which in return is related to the mip level of the virtual page that is 

mapped. On systems with direct memory access the performance is only limited by the speed at 

which memory can be written. However, on systems where the only access to video memory is 

through an API like OpenGL or DirectX the page table updates face significant API overhead. 

Current APIs do not support sub-image "memset" operations, only sub-image data copies. In 

order to effectively "memset" a square texel area of a page table mip level, the same texel value 
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is first written many times to a block of main memory and this data is then transferred through 

the API to update a square texture area in video memory.  

6.3 Feedback Analysis  

The performance of the feedback analysis is proportional to the size of the feedback buffer. A 

smaller feedback buffer improves the performance of the feedback analysis but it results in a 

coarser sampling of the texture data where virtual pages may not be immediately considered 

visible. In practice there are no noticeable visual anomalies from using a feedback buffer that is 

more than a 10x factor smaller than the resolution at which the scene is rendered.  

The feedback analysis could be implemented on the GPU. However, there is usually enough of 

CPU time available, in particular on for instance the IBM Cell SPEs. On this platform and multi-

core PCs, the feedback analysis only consumes in the order of 0.5 milliseconds worth of CPU 

time for a feedback buffer of 80x60 pixels. This performance is achieved by using a hash table to 

quickly find the parent of a page in the quad-tree that is built to extract an unique list of pages 

from the feedback buffer.  

6.4 Storage  

The texture pages used in the system are 128 x 128 texels with a 4-texel inset border and a 120 x 

120 texel payload. In order to optimally use the available video memory, the texture pages with 

borders are a power of two as opposed to the payload being a power of two. On some hardware 

the maximum size of the physical textures is a power of two (like 4096 x 4096) and with a power 

of two page size of 128 x 128 an exact number of pages can be fit on the physical textures 

without wasting any space.  

The physical texture size is typically 4096 x 4096 texels which is equal to 32 x 32 texture pages. 

When stored DXT compressed in video memory, the three 4096 x 4096 physical textures 

(storing 10 channels) together consume 40 MB. Support for larger physical textures (16k x 16k 

texels) is available on newer hardware while older hardware may not support textures larger than 

4096 x 4096 texels. To increase the number of physical pages on older hardware, a 3D texture 

could be used. This would make the virtual to physical translation only slightly more 

complicated but a lot of hardware does not support anisotropic filtering on 3D textures which 

makes this solution unattractive. Instead, a cube map texture could be used but that would make 

the address translation significantly more complicated. The easiest way to increase the number of 

physical pages is to create multiple separate physical page pools in the form of multiple sets of 

physical textures. However, this requires different geometry to allocate pages from different 

pools and not every rendered scene may end up with an even balance of geometry such that all 

pools fill up equally.  

The virtual to physical translations that use bytes to store the physical page coordinates allow for 

a maximum of 256 x 256 physical pages which is equivalent to a physical texture of 32k x 32k 

texels when the texture page size is 128 x 128 texels. The virtual to physical translation using a 

5:6:5 page table can only support up to 32 x 32 physical pages which accumulates to a physical 

texture size of 4096 x 4096 when the texture page size is 128 x 128 texels.  
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Virtual textures on the other hand can be as large as 240k x 240k texels (where 240k = 2048 * 

payload size) in which case a 2-byte or 5:6:5 page table texture consumes 10.66 MB of memory. 

Instead of the maximum size, 120k x 120k virtual textures are typically used to reduce the page 

table texture memory. For a 120k x 120k virtual texture the page table texture consumes 2.66 

MB of memory.  

In the computer game RAGE most environments use a single 120k x 120k virtual texture for all 

static geometry and another 120k x 120k virtual texture for the dynamic objects in the 

environment. Some very large outdoor environments use multiple virtual textures for the static 

geometry. Each virtual texture has its own page table but multiple virtual textures can map to the 

same pool of physical pages but they can also map to separate pools of physical pages.  

An uncompressed fully populated 120k x 120k virtual texture with 12 channels per texel (of 

which 2 unused) requires 225 GB of storage without borders and 256 GB with borders. 

Compressed to DXT format such a virtual texture still takes up 53 GB. For most static 

environments in the computer game RAGE, the 120k x 120k virtual texture is not fully 

populated. A lot of the finest mip texture pages are never visible and need not be stored. 

Furthermore, any part of a page that is never visible at full resolution can be blurred to 

significantly improve the variable bit rate compression ratio. Table 2 shows the sizes of the 

virtual textures used for the static geometry in several environments of the computer game 

RAGE.  

Table 2: Virtual texture sizes (10 components per texel). 

  environment # pages   uncompressed     DXT         JPEG-like   HD-Photo 

Wellspring 112102   21023 MB (96 b/t, 192 kB/p) 4379 MB (20 b/t, 40 kB/p) 334 MB (1.5 b/t, 3.1 kB/p) 170 MB (0.8 b/t, 1.6 kB/p) 

Bash TV 115879   21731 MB (96 b/t, 192 kB/p) 4526 MB (20 b/t, 40 kB/p) 358 MB (1.6 b/t, 3.2 kB/p) 205 MB (0.9 b/t, 1.8 kB/p) 

RC-Bomb Base 244357   45826 MB (96 b/t, 192 kB/p) 9545 MB (20 b/t, 40 kB/p) 777 MB (1.6 b/t, 3.2 kB/p) 416 MB (0.9 b/t, 1.8 kB/p) 

In table 2, the average bits/texel (b/t) and average page size in kiloBytes (kB/p) is shown 

between parentheses.  

6.5 Transcode  

Transcoding texture pages is a significant computational load and is performed in parallel 

through a parallel job processing system that offloads the jobs to whatever processors are 

available and suitable to the task. On newer graphics hardware the texture page transcoding can 

be implemented to run on the GPU. On systems with few CPU cores this can offload a 

significant computational load to the GPU allowing the CPU cores to be used for other purposes. 

However, older graphics hardware may not have the necessary capabilities to implement 

transcoding, or the GPU is already fully occupied with rendering and there is no time available 

for the additional computational load. On such systems the transcoding is implemented to run on 

the available CPU cores, like the hardware threads of the Cell PPE and the Cell SPEs. Table 3 

shows the DXT compression performance on several different processors expressed in 

MegaTexels per second (MT/s).  
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Table 3: DXT compression performance. 

  type 
3.2 GHz 45nm Intel Core 2 

using a single core   

  3.2 GHz IBM Cell using a 

single PPE hardware thread   

  3.2 GHz IBM Cell 

using a single SPE   

DXT1 - RGB Specular + Binary Alpha 252 MT/s 160 MT/s 334 MT/s 

DXT5 - YCoCg Diffuse 128 MT/s 75 MT/s 150 MT/s 

DXT5 - XY-Normal + Power 203 MT/s 115 MT/s 240 MT/s 

The following graphs show the variable bit rate decompression performance on several different 

processors expressed in MegaTexels per second (MT/s) for a range of compression ratios. 

Variable bit rate decompression performance. 

RGB 4:2:0 JPEG-like RGB 4:4:4 HD-Photo 

  

YCoCg 4:2:0 JPEG-like YCoCg 4:4:4 HD-Photo 

  

XY-Normal JPEG-like XY-Normal HD-Photo 
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It is clear that the HD-Photo decompression is more costly than decompressing the JPEG-like 

format. However, HD-Photo generally allows the texture data to be compressed to almost half 

the size of JPEG-like data while maintaining equal fidelity and usually reducing or removing 

objectionable compression artifacts. As such, different compression ratios need to be considered 

when comparing the performance between HD-Photo and the JPEG-like format. For instance, it 

is reasonable to compare 20:1 JPEG-like compressed data with 40:1 HD-Photo compressed data. 

It is also important to note that 4:2:0 sub sampling is used for the JPEG-like compression of 

RGB and YCoCg data. Therefore, only half the data is pushed through the JPEG-like decoder as 

opposed to the 4:4:4 sampled data that is pushed through the HD-Photo decoder.  

The following graphs show the complete transcode performance on several different processors.  

Transcode performance (10 components per texel). 

JPEG-like -> DXT HD-Photo -> DXT 
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6.6 Visuals  

A virtual texture system using the described solutions has been successfully implemented and 

employed in the computer game RAGE. This game runs at high frame rates (60 FPS) on a 

variety of graphics hardware as used on various platforms such as the Microsoft Windows PC, 

Apple Macintosh PC, Xbox 360, and the PlayStation 3. Below are some outdoor environment 

shots from the computer game RAGE.  

 

 

 

 

 

 

 

Environment shots from RAGE. 
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7. Conclusion  

Virtual textures differ from other forms of virtual memory because first, it is possible to fall back 

to slightly blurrier data without stalling execution, and second, lossy compression of the data is 

perfectly acceptable for most uses. Implementations of software virtual textures exploit these key 

differences between virtual textures and other forms of virtual memory to maintain performance 

and reduce memory requirements at the cost of quality. Implementing virtual textures without 

special hardware support is challenging, involves many subtleties, and inevitably comes down to 

finding the right trade between performance, memory requirements, and quality. The solutions 

presented here allow the implementation of very large virtual textures at high performance with 

very little loss in quality while requiring a minimal memory footprint. A virtual texture system 

using the described solutions has been successfully implemented and employed in the computer 

game RAGE which runs on a variety graphics hardware such as available on various platforms 

like the Microsoft Windows PC, Apple Macintosh PC, Xbox 360, and the PlayStation 3.  

8. Future Directions  

A reactive system for texture feedback works well because a virtual texture system is inherently 

latency tolerant. However, the separate feedback rendering pass comes at a cost and it is 

desirable to combine it with a normal rendering pass. When combining the feedback pass with a 

normal rendering pass it is important that the feedback is properly depth tested to avoid stressing 

the virtual texture pipeline with requests for texture pages that are ultimately invisible. If the 

rendering pipeline implements a separate explicit depth-only pass then it is worthwhile to 

consider writing out feedback with this depth pass. On many platforms a depth-only pass 

benefits from double speed depth writes and such a rendering pass usually ends up being 

geometry (vertex) limited. By writing out feedback with the depth pass, the depth will no longer 

be written at double speed and additional fragment cost is added to calculate the feedback such 

that the rendering pass may become fragment limited. Based on the amount of geometry that is 

rendered and the specific GPU performance characteristics this can be a positive trade because 

there is no longer a separate feedback pass that is almost always geometry (vertex) limited due to 

the small size of the feedback buffer. When using multiple render targets it is also possible to 

render depth, color and feedback in a single pass. This has the additional benefit of being able to 

use the anisotropic LOD calculation for both the feedback and the page table lookup.  

Texture filtering is something that is implemented in fixed function hardware even on current 

and future programmable graphics hardware because performing texture filtering completely in 

software (i.e. a fragment program) comes at a significant cost. One of the unfortunate 

complexities of virtual textures without special graphics hardware support is that the texture unit, 

being unaware of the actual texture pages, cannot filter across page boundaries. If, however, the 

virtual to physical translation is implemented in hardware, proper texture filtering can be 

implemented in hardware by performing an address translation for each texel that is needed by 

the texture filter. This means that a hardware implementation uses 8 virtual to physical 

translations for a texture fetch with tri-linear filtering and there may be up to 8 different texture 

pages touched if the texture location is on a page corner of the nearest coarser mip level. An 

anisotropic texture fetch may require even more virtual to physical translations.  
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When a regular virtual memory system is already implemented in hardware, it is desirable to take 

advantage of such a system to implement a virtual texture system in hardware as well. The 

virtual memory pages can be used to store texture pages and the virtual memory page tables can 

be used for the virtual to physical translation of texture data. However, one of the complications 

is that a virtual memory system has no knowledge of the relationship between texture pages in 

the mip hierarchy and cannot automatically fall back to a page from a coarser mip if the finer 

mip is not yet available. When a page for a finer mip is not available, the virtual memory system 

could simply return a page fault and a texture fetch can be retried with a higher minimum LOD 

clamp. However, the next attempt may also fail and several retries may be necessary at a 

performance cost. Another solution could be to store additional information in the page tables of 

the virtual memory system to allow the virtual to physical translation to automatically fall back 

to a page from a coarser mip if the finer mip is not yet available. The downside of this approach 

is that this bloats the page tables that may also be used for data other than textures where this 

information has no meaning and is simply a waste.  

Instead of storing additional information in the page tables, it is also an option to maintain a "min 

LOD" texture that stores the minimum LOD that is resident in physical memory for each page of 

the virtual texture. Obviously, such a texture would have to be kept perfectly synchronized with 

the page tables of the virtual memory system to avoid page faults. A texture lookup into this 

"min LOD" texture can be used to retrieve the LOD to which the actual virtual texture lookup 

needs to be clamped to avoid page faults. Unfortunately, a tri-linear and, in particular, an 

anisotropic texture lookup on a virtual texture may cross several page boundaries on several mip 

levels. As such, the "min LOD" texture would have to be sampled with a "maximum filter" with 

an appropriate footprint that corresponds to the footprint of the virtual texture lookup that 

follows. This requires a "maximum texture filter" to be implemented in hardware and a fast way 

to determine the sample footprint into the "min LOD" texture based on the footprint of a virtual 

texture lookup.  

Such a "min LOD" texture can also be used to blend in finer mips to avoid LOD snapping or 

visible "popping" of texture detail when, despite all efforts, there is a significant latency between 

the time that a page is needed and the time that the data for it is available. When using a "min 

LOD" texture, the texels of this texture can be gradually adjusted when a new page is mapped to 

transparently blend in the new page.  
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Appendix A - Virtual to physical translations  

  

/* 

    Copyright (c) 2012, Id Software LLC, a ZeniMax Media Company. 

    Written by: J.M.P. van Waveren 

 

    Permission is hereby granted, free of charge, to any person 

    obtaining a copy of this software and associated documentation 

    files (the "Software"), to deal in the Software without 

    restriction, including without limitation the rights to use, 

    copy, modify, merge, publish, distribute, sublicense, and/or sell 

    copies of the Software, and to permit persons to whom the 

    Software is furnished to do so, subject to the following 

    conditions: 

 

    The above copyright notice and this permission notice shall be 

    included in all copies or substantial portions of the Software. 

 

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 

    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 

    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 

    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 

    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

    OTHER DEALINGS IN THE SOFTWARE. 

*/ 

 

// constants 

const int pageWidth = 128;      // 128 x 128 texels per page 

const int pageBorder = 4;       // 4-texel inset border 

const int physPagesWide = 32;   // 4096 x 4096 texels per physical texture 

const int virtPagesWide = 1024; // 120K x 120K texels per virtual texture 

 

// derived constant used to scale an offset within a virtual page to an offset within a physical page 

const float pageFracScale = ( pageWidth - 2.0f * pageBorder ) / ( pageWidth * physPagesWide ); 

 

unsigned int physX, physY;      // coordinates of the physical page (in whole pages) 

unsighed int physMipLevel;      // mip level of the virtual page stored in the physical page 

unsigned int virtX, virtY;      // coordinates of the virtual page (in whole pages) 

 

float physTexelsWide = physPagesWide * pageWidth; 

float virtLevelPagesWide = virtPagesWide >> physMipLevel; 

 

// The scale and bias that can be used to translate a virtual address to a physical address. 

float scaleST = virtLevelPagesWide * ( pageWidth - 2.0f * pageBorder ) / physTexelsWide; 

float biasS = ( physX * pageWidth + pageBorder ) / 

                physTexelsWide - scaleST * virtX / virtLevelPagesWide; 

float biasT = ( physY * pageWidth + pageBorder ) / 

                physTexelsWide - scaleST * virtY / virtLevelPagesWide; 

 

// Scale factor applied to the virtual texture coordinate derivatives 

// used for anisotropic texture lookups. 

float derivativeScale = pageFracScale * virtLevelPagesWide; 

 

// Physical page coordinates converted to 8-bit values that can be used directly in the fragment 

// program to lookup the scale and bias from a mapping texture with one texel per physical page. 

unsigned char texelPhysX = (unsigned char)( ( physX / ( physPagesWide - 1.0f ) ) * 255.0f + 0.01f ); 

unsigned char texelPhysY = (unsigned char)( ( physY / ( physPagesWide - 1.0f ) ) * 255.0f + 0.01f ); 
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   A.1 - FP32x4 page table  

  

// The page table is a four component 32-bit floating-point texture storing 

// the scale in the first component and the S,T bias in the last two components. 

// 

// float pageTable.texel[4] = { scaleST, derivativeScale, biasS, biasT }; 

// 

// For a virtual texture with 1024 x 1024 pages the page table = 21.33 MB. 

 

static float2 VirtualToPhysicalTranslation( sampler2D pageTable, float2 virtCoords ) { 

  float4 scaleBias = tex2D( pageTable, virtCoords ); 

  return virtCoords * scaleBias.x + scaleBias.zw; 

 

  // float derivativeScale = scaleBias.y; 

} 

 

   A.2 - 8:8 page table + FP32x4 mapping texture  

  

// The page table is an 8-bit per component unsigned integer luminance-alpha texture 

// storing the X,Y coordinates of the physical pages to be used for the virtual pages. 

// Also using a single 4 component 32-bit floating-point mapping texture with the scale 

// stored in the first component and the S,T bias stored in the last two components. 

// 

// unsigned char pageTable.texel[2] = { texelPhysX, texelPhysY }; 

// float physPageScaleBias.texel[4] = { scaleST, derivativeScale, biasS, biasT }; 

// 

// For a virtual texture with 1024 x 1024 pages and physical textures with 32 x 32 pages 

// the page table = 2.66 MB and the mapping texture is 16 kB. 

 

static float2 VirtualToPhysicalTranslation( sampler2D pageTable, 

                                            sampler2D physPageScaleBias, float2 virtCoords ) { 

  half2 physicalPage = tex2D( pageTable, virtCoords ).xw; 

  float4 scaleBias = tex2D( physPageScaleBias, physicalPage ); 

  return virtCoords * scaleBias.x + scaleBias.zw; 

 

  // float derivativeScale = scaleBias.y; 

} 

 

   A.3 - 8:8 page table + 3/4 x FP32x1 mapping textures  

  

// The page table is an 8-bit per component unsigned integer luminance-alpha texture 

// storing the X,Y coordinates of the physical pages to be used for the virtual pages. 

// Also using three single component 32-bit floating-point mapping textures. 

// One to store the scale and two for the S,T bias. 

// 

// unsigned char pageTable.texel[2] = { texelPhysX, texelPhysY }; 

// float physPageScale.texel[1] = { scaleST }; 

// float physPageBiasS.texel[1] = { biasS }; 

// float physPageBiasT.texel[1] = { biasT }; 

// float virtCoordScale.texel[1] = { derivativeScale }; 

// 

// For a virtual texture with 1024 x 1024 pages and physical textures with 32 x 32 pages 

// the page table = 2.66 MB and the mapping textures are 12 kB. 

 

static float2 VirtualToPhysicalTranslation( sampler2D pageTable, 

                                            sampler2D physPageScale, 

                                            sampler2D physPageBiasS, 

                                            sampler2D physPageBiasT, float2 virtCoords ) { 

  half2 physicalPage = tex2D( pageTable, virtCoords ).xw; 

  float scaleST = tex2D( physPageScale, physicalPage ).x; 

  float biasS = tex2D( physPageBiasS, physicalPage ).x; 

  float biasT = tex2D( physPageBiasT, physicalPage ).x; 

  return virtCoords * scaleST + float2( biasS, biasT ); 

 

  // float derivativeScale = tex2D( virtCoordScale, physicalPage ).x; 

} 
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   A.4 - 8:8 page table + UINT16x1/2 + UINT16x2 mapping textures  

  

// The page table is an 8-bit per component unsigned integer luminance-alpha texture 

// storing the X,Y coordinates of the physical pages to be used for the virtual pages. 

// Also using two unsigned fixed-point 16-bit per component mapping textures. 

// One luminance texture with a single component to store the scale 

// and one luminance-alpha texture with two components to store the S,T bias. 

// 

// unsigned char pageTable.texel[2] = { texelPhysX, texelPhysY }; 

// unsigned short physPageScale.texel[1/2] = { 

//     (unsigned short)( scaleST * ( 65535.0f / 32.0f ) + 0.5f ), 

//     derivativeScale 

// }; 

// unsigned short physPageBias.texel[2] = { 

//     (unsigned short)( ( biasS + 30.0f ) * ( 65535.0f / 32.0f ) + 0.5f ), 

//     (unsigned short)( ( biasT + 30.0f ) * ( 65535.0f / 32.0f ) + 0.5f ) 

// }; 

// 

// For a virtual texture with 1024 x 1024 pages and physical textures with 32 x 32 pages 

// the page table = 2.66 MB and the mapping textures are 6 kB. 

 

static float2 VirtualToPhysicalTranslation( sampler2D pageTable, 

                                            sampler2D physPageScale, 

                                            sampler2D physPageBias, float2 virtCoords ) { 

  half2 physicalPage = tex2D( pageTable, virtCoords ).xw; 

  float4 scaleST = tex2D( physPageScale, physicalPage ) * 32.0; 

  float4 biasST = tex2D( physPageBias, physicalPage ) * 32.0; 

  return virtCoords * scaleST.x + biasST.xw - 30.0; 

 

  // float derivativeScale = scaleST.y; 

} 

 

   A.5 - 8:8:8:8 page table  

  

// The page table is in 8-bit per component RGBA format with the physical page coordinates 

// stored in the first two components and the scale stored in the last two components. 

// 

// unsigned short scale = ( virtPagesWide * 16 ) >> physMipLevel; 

// unsigned char pageTable.texel[4] = { physX, physY, scale & 0xFF, scale >> 8 }; 

// 

// For a virtual texture with 1024 x 1024 pages the page table = 5.33 MB. 

 

static float2 VirtualToPhysicalTranslation( sampler2D pageTable, float2 virtCoords ) { 

  // constants 

  const float pageWidth = 128;        // 128 x 128 texels per page 

  const float pageBorder = 4;         // 4-texel inset border 

  const float physPagesWide = 32;     // 4096 x 4096 texels per physical texture 

 

  // Multiplier to undo the hardware specific conversion from an 

  // unsigned byte [0, 255] to a floating-point value in the range [0, 1]. 

#if defined( GEFORCE_7800 ) || defined( RADEON_X1900 ) 

  const float floatToByte = 255.0 + 1.0 / 256.0; 

#else 

  const float floatToByte = 255.0; 

#endif 

 

  // derived constants 

  const float pageFracScale = ( pageWidth - 2 * pageBorder ) / pageWidth / physPagesWide; 

  const float borderOffset = pageBorder / pageWidth / physPagesWide; 

  const float4 texScale = { 

     floatToByte / physPagesWide, 

     floatToByte / physPagesWide, 

     floatToByte * 1.0 / 16.0, 

     floatToByte * 256.0 / 16.0 

  }; 

  const float 4 texBias = { borderOffset, borderOffset, 0, 0 }; 

 

  // virtual to physical translation 

  float4 physPage = tex2D( pageTable, virtCoords ) * texScale + texBias; 

  float2 pageFrac = frac( virtCoords * ( physPage.z + physPage.w ) ); 

  return pageFrac * pageFracScale + physPage.xy; 

  

  // float derivativeScale = pageFracScale * ( physPage.z + physPage.w ); 

} 
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   A.6 - 5:6:5 page table  

  

// The page table is in RGB 565 format with the physical page coordinates stored 

// in the 5-bit components and the log2 of the width in pages of the physical 

// page's mip level stored in the 6-bit component. 

// 

// unsigned short pageTable.texel[1] = { 

//    ( ( physX * 32 / physPagesWide ) << 11 ) | 

//    ( ( log2( virtPagesWide ) - physMipLevel ) << 5  ) | 

//    ( ( physY * 32 / physPagesWide ) << 0 ) 

// }; 

// 

// For a virtual texture with 1024 x 1024 pages the page table = 2.66 MB. 

// 

// On platforms with an accurate implementation of exp2(), the 1.0 / 4096.0 

// addition can be removed and the floor() does not need to include the 'y' 

// component which removes a dependency and improves performance. 

 

static float2 VirtualToPhysicalTranslation( sampler2D pageTable, float2 virtCoords ) { 

  // constants 

  const float pageWidth = 128;        // 128 x 128 texels per page 

  const float pageBorder = 4;         // 4-texel inset border 

  const float physPagesWide = 32;     // 4096 x 4096 texels per physical texture 

 

  // Multipliers to undo the hardware specific conversion from an 

  // 5-bit or 6-bit value to a floating-point value in the range [0, 1]. 

#if defined( GEFORCE_7800 ) 

  const float floatToPagesWide = ( 255.0 + 1.0 / 256.0 ) / 256.0 * physPagesWide; 

  const float floatToMip = ( 255.0 + 1.0 / 256.0 ) / 256.0 * 64.0; 

#elif defined( RADEON_X1900 ) 

  const float floatToPagesWide = ( 31.0 + 1.0 / 33.0 ) / 32.0 * physPagesWide; 

  const float floatToMip = ( 63.0 + 1.0 / 65.0 ); 

#else 

  const float floatToPagesWide = 255.0 / 256.0 * physPagesWide; 

  const float floatToMip = 255.0 / 256.0 * 64.0; 

#endif 

 

  // derived constants 

  const float pageFracScale = ( pageWidth - 2 * pageBorder ) / pageWidth / physPagesWide; 

  const float borderOffset = pageBorder / pageWidth / physPagesWide; 

  const float4 texScale = { 

    floatToPagesWide, 

    floatToMip, 

    floatToPagesWide, 

    0 

  }; 

  // small value added to the exponent so we can floor the inaccurate exp2() result 

  const float4 texBias = { 0, 1.0 / 4096.0, 0, 0 }; 

 

  // translation 

  half4 physPage = tex2D( pageTable, virtCoords ) * texScale + texBias; 

  physPage.y = exp2( physPage.y ); 

  physPage = floor( physPage );     // account for inaccurate exp2() and strip replicated bits 

  float2 pageFrac = frac( virtCoords * physPage.y ); 

  return pageFrac * pageFracScale + physPage.xz / physPagesWide + borderOffset; 

 

  // float derivativeScale = pageFracScale * physPage.y; 

} 
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Appendix B - Feedback Fragment Program  

  

uniform float virtualTextureID; 

uniform float feedbackBias;      // log2( feedbackWidth / windowWidth ) + dynamicLODbias 

 

struct PS_IN { 

  float4 texcoord0 : TEXCOORD0; 

}; 

 

struct PS_OUT { 

  float4 feedback : COLOR; 

}; 

 

void main( PS_IN fragment, out PS_OUT result ) { 

  const float maxAniso = 4; 

  const float maxAnisoLog2 = log2( maxAniso ); 

  const float virtPagesWide = 1024; 

  const float pageWidth = 128; 

  const float pageBorder = 4; 

  const float virtTexelsWide = virtPagesWide * ( pageWidth - 2 * pageBorder ); 

 

  float2 texcoords = fragment.texcoord0.xy * virtTexelsWide; 

 

  float2 dx = ddx( texcoords ); 

  float2 dy = ddy( texcoords ); 

 

  float px = dot( dx, dx ); 

  float py = dot( dy, dy ); 

 

  float maxLod = 0.5 * log2( max( px, py ) );   // log2(sqrt()) = 0.5*log2() 

  float minLod = 0.5 * log2( min( px, py ) ); 

 

  float anisoLOD = maxLod - min( maxLod - minLod, maxAnisoLog2 ); 

  float desiredLod = max( anisoLOD + feedbackBias, 0.0 ); 

 

  result.feedback.xy = fragment.texcoord0.xy * virtPagesWide; 

  result.feedback.z = desiredLod; 

  result.feedback.w = virtualTextureID; 

} 
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Appendix C - Virtual Texture Fragment Program (Bilinear-

Anistropic)  

  

uniform sampler2D physicalTextureDiffuse; 

uniform sampler2D physicalTextureSpecular; 

uniform sampler2D physicalTextureNormal; 

uniform sampler2D pageTable; 

 

struct PS_IN { 

  float4 texcoord0 : TEXCOORD0; 

}; 

 

struct PS_OUT { 

  float4 color : COLOR; 

}; 

 

void main( PS_IN fragment, out PS_OUT result ) { 

  float3 physCoords = VirtualToPhysicalTranslation( pageTable, fragment.texcoord0.xy ); 

 

#if defined( RADEON_X1900 ) 

  float2 dx = ddx( fragment.texcoord0.xy ) * physCoords.z; 

  float2 dy = ddy( fragment.texcoord0.xy ) * physCoords.z; 

 

  half4 diffuseYCoCg  = tex2D( physicalTextureDiffuse,  physCoords.xy, dx, dy ); 

  half4 specularRGB   = tex2D( physicalTextureSpecular, physCoords.xy, dx, dy ); 

  half4 normalXY      = tex2D( physicalTextureNormal,   physCoords.xy, dx, dy ); 

#else 

  half4 diffuseYCoCg  = tex2D( physicalTextureDiffuse,  physCoords.xy ); 

  half4 specularRGB   = tex2D( physicalTextureSpecular, physCoords.xy ); 

  half4 normalXY      = tex2D( physicalTextureNormal,   physCoords.xy ); 

#endif 

 

  half3 diffuse; 

  diffuseYCoCg.z = 1.0 / ( ( diffuseYCoCg.z * 255.0 / 8.0 ) + 1.0 ); 

  diffuseYCoCg.xy *= diffuseYCoCg.z; 

  diffuse.r = dot4( diffuseYCoCg, half4(  1.0, -1.0,                  0.0, 1.0 ) ); 

  diffuse.g = dot4( diffuseYCoCg, half4(  0.0,  1.0, -0.5 * 256.0 / 255.0, 1.0 ) ); 

  diffuse.b = dot4( diffuseYCoCg, half4( -1.0, -1.0,  1.0 * 256.0 / 255.0, 1.0 ) ); 

 

  half3 normal = normalXY.wyz * 2.0 - 1.0; 

  normal.z = 1.0 - sqrt( dot( normal.xy, normal.xy ) ); 

 

  result.color.rgb = diffuse.rgb + normal.xyz * half3( 0.707, 0.707, 0 ) * specularRGB.rgb; 

} 
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Appendix D - Virtual Texture Fragment Program 

(Trilinear-Anisotropic + Feedback)  

  

uniform sampler2D physicalTextureDiffuse; 

uniform sampler2D physicalTextureSpecular; 

uniform sampler2D physicalTextureNormal; 

uniform sampler2D pageTable;     // assumed to be FP32x4 

 

uniform float virtualTextureID; 

uniform float feedbackBias;      // log2( feedbackWidth / windowWidth ) + dynamicLODbias 

 

struct PS_IN { 

  float4 texcoord0 : TEXCOORD0; 

}; 

 

struct PS_OUT { 

  float4 color : COLOR0; 

  float4 feedback : COLOR1; 

}; 

 

void main( PS_IN fragment, out PS_OUT result ) { 

  const float maxAniso = 4; 

  const float maxAnisoLog2 = log2( maxAniso ); 

  const float virtPagesWide = 1024; 

  const float pageWidth = 128; 

  const float pageBorder = 4; 

  const float virtTexelsWide = virtPagesWide * ( pageWidth - 2 * pageBorder ); 

 

  float2 texcoords = fragment.texcoord0.xy * virtTexelsWide; 

 

  float2 dx = ddx( texcoords ); 

  float2 dy = ddy( texcoords ); 

 

  float px = dot( dx, dx ); 

  float py = dot( dy, dy ); 

 

  float maxLod = 0.5 * log2( max( px, py ) );   // log2(sqrt()) = 0.5*log2() 

  float minLod = 0.5 * log2( min( px, py ) ); 

 

  float anisoLOD = maxLod - min( maxLod - minLod, maxAnisoLog2 ); 

 

  float4 virtCoordsLod1 = float4( fragment.texcoord0.x, fragment.texcoord0.y, 0.0, anisoLOD - 0.5 ); 

  float4 virtCoordsLod2 = float4( fragment.texcoord0.x, fragment.texcoord0.y, 0.0, anisoLOD + 0.5 ); 

 

  float4 scaleBias1 = tex2Dlod( pageTable, virtCoordsLod1 ); 

  float4 scaleBias2 = tex2Dlod( pageTable, virtCoordsLod2 ); 

 

  float2 physCoords1 = fragment.texcoord0.xy * scaleBias1.x + scaleBias1.zw; 

  float2 physCoords2 = fragment.texcoord0.xy * scaleBias2.x + scaleBias2.zw; 

 

#if defined( RADEON_X1900 ) 

  float2 dx = ddx( fragment.texcoord0.xy ); 

  float2 dy = ddy( fragment.texcoord0.xy ); 

 

  float2 dx1 = dx * scaleBias1.y; 

  float2 dy1 = dy * scaleBias1.y; 

 

  float2 dx2 = dx * scaleBias2.y; 

  float2 dy2 = dy * scaleBias2.y; 

 

  half4 diffuseYCoCg1 = tex2D( physicalTextureDiffuse,  physCoords1.xy, dx1, dy1 ); 

  half4 specularRGB1  = tex2D( physicalTextureSpecular, physCoords1.xy, dx1, dy1 ); 

  half4 normalXY1     = tex2D( physicalTextureNormal,   physCoords1.xy, dx1, dy1 ); 

 

  half4 diffuseYCoCg2 = tex2D( physicalTextureDiffuse,  physCoords1.xy, dx2, dy2 ); 

  half4 specularRGB2  = tex2D( physicalTextureSpecular, physCoords1.xy, dx2, dy2 ); 

  half4 normalXY2     = tex2D( physicalTextureNormal,   physCoords1.xy, dx2, dy2 ); 

#else 

  half4 diffuseYCoCg1 = tex2D( physicalTextureDiffuse,  physCoords1.xy ); 

  half4 specularRGB1  = tex2D( physicalTextureSpecular, physCoords1.xy ); 

  half4 normalXY1     = tex2D( physicalTextureNormal,   physCoords1.xy ); 

 

  half4 diffuseYCoCg2 = tex2D( physicalTextureDiffuse,  physCoords2.xy ); 

  half4 specularRGB2  = tex2D( physicalTextureSpecular, physCoords2.xy ); 

  half4 normalXY2     = tex2D( physicalTextureNormal,   physCoords2.xy ); 

#endif 
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  float trilinearFraction = fract( anisoLOD ); 

 

  half4 diffuseYCoCg  = lerp( diffuseYCoCg1, diffuseYCoCg2, trilinearFraction ); 

  half4 specularRGB   = lerp( specularRGB1, specularRGB2, trilinearFraction ); 

  half4 normalXY      = lerp( normalXY1, normalXY2, trilinearFraction ); 

 

  half3 diffuse; 

  diffuseYCoCg.z = 1.0 / ( ( diffuseYCoCg.z * 255.0 / 8.0 ) + 1.0 ); 

  diffuseYCoCg.xy *= diffuseYCoCg.z; 

  diffuse.r = dot4( diffuseYCoCg, half4(  1.0, -1.0,                  0.0, 1.0 ) ); 

  diffuse.g = dot4( diffuseYCoCg, half4(  0.0,  1.0, -0.5 * 256.0 / 255.0, 1.0 ) ); 

  diffuse.b = dot4( diffuseYCoCg, half4( -1.0, -1.0,  1.0 * 256.0 / 255.0, 1.0 ) ); 

 

  half3 normal = normalXY.wyz * 2.0 - 1.0; 

  normal.z = 1.0 - sqrt( dot( normal.xy, normal.xy ) ); 

 

  result.color.rgb = diffuse.rgb + normal.xyz * half3( 0.707, 0.707, 0 ) * specularRGB.rgb; 

 

  result.feedback.xy = fragment.texcoord0.xy * virtPagesWide; 

  result.feedback.z = max( anisoLOD + feedbackBias, 0.0 ); 

  result.feedback.w = virtualTextureID; 

} 

 

 

 


