
Queried Virtual Shadow Maps

Markus Giegl∗ Michael Wimmer∗

∗Vienna University of Technology

Figure 1: Left: shadow map reparametrization techniques (lightspace perspective shadow maps is used here) alone cannot guarantee subpixel
accuracy (leading to perspective aliasing in the lower right corner and projection aliasing on the slope in the middle of the scene), even with
a 40962 shadow map. Right: Queried Virtual Shadow Maps prevent both types of undersampling artifacts.

Abstract

Shadowing scenes by shadow mapping has long suffered from the
fundamental problem of undersampling artifacts due to too low
shadow map resolution, leading to so-called perspective and pro-
jection aliasing.

In this paper we present a new real-time shadow mapping algorithm
capable of shadowing large scenes by virtually increasing the reso-
lution of the shadow map beyond the GPU hardware limit.

We start with a brute force approach that uniformly increases
the resolution of the whole shadow map. We then introduce
a smarter version which greatly increases runtime performance
while still being GPU-friendly. The algorithm contains an easy to
use performance/quality-tradeoff parameter, making it tunable to a
wide range of graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: shadow, shadow map, large environments, realtime
shadowing

1 Introduction

Shadow mapping is a very appealing approach to employ rasteri-
zation to solve the first hit visibility problem and use this result to

∗{giegl|wimmer}@cg.tuwien.ac.at, 1040 Vienna, Austria

calculate the direct light shadowing of a scene. This elegant ap-
proach has just one fundamental problem: The shadow map must
contain enough information to allow the visibility queries to be an-
swered with subpixel accuracy for a given frame buffer resolution,
otherwise aliasing artifacts will be visible. If this information is not
contained in the shadow map, then all any algorithm can do is try
to mask these artifacts, e.g. by means of filtering.

Figure 2: Visualization of projection and perspective aliasing.

Figure 2 visualizes the source for the two forms of shadow map
aliasing:

Projection aliasing is stronger, the more the texel in the shadow
map is projected onto a large area of the shadow receiving surface;
this is the case, the more the surface normal is perpendicular to the
light direction.

Perspective aliasing is stronger, the nearer the shadow receiving
surface is to the eye point; this is because due to the nature of
the perspective projection, the closer an object is to the eye-point
the more pixels it occupies on the screen. Uniform shadow map-
ping does not take this into account, but uses the same density of
entries everywhere, whereas shadow map reparametrization tech-
niques (see section 2 below) globally warp the geometry that is ren-
dered into the shadow map, so that there will be more information
available near the eye point when querying the shadow map; since
the transformation is global, they can however do nothing against
the local effect of projection aliasing.

Figure 3: The forest scene used for testing the QVSM algorithm.

A straightforward way to increase the information contained in a
uniform shadow map is to increase the resolution of the shadow
map texture. This becomes impractical very fast, due to its
quadratic increase in memory consumption (on current hardware
the maximum supported textures size, typically 4096×4096, is the
limiting factor, even before running out of memory).

This paper presents an algorithm which runs on current graphics
hardware and increases the effective shadow map resolution avail-
able to shadow the scene, while avoiding the quadratic increase in
memory consumption. It does so in an adaptive manner, creating
more shadow map resolution where it is needed, without the need
to store information from the previous frame (making it suitable for
fully dynamic scenes). It thereby can guarantee subpixel accuracy
with regards to the shadow map query, getting rid of both projec-
tion and perspective aliasing. It contains an intuitive to use quality
vs speed tradeoff parameter, which can be used to tune it to a wide
range of graphics hardware.

The algorithm is orthogonal to and can therefore be combined with
other techniques, such as shadow map reparametrization; we have
done so for Light Space Perspective Shadow Maps [Wimmer et al.
2004].

2 Previous work

The two most important categories of shadow algorithms are
shadow volumes [Crow 1977] and shadow mapping [Williams
1978].

Most of the shadow map publications try to solve the problem of
aliasing artifacts. Percentage closer filtering [Reeves et al. 1987]
alleviates reprojection problems by sampling the shadow map. In
Variance Shadow Maps, Donelly et al [Donnelly and Lauritzen
2006] use the variance of the depth values to further improve the
shadow map sampling results. A number of papers have tried to
solve the perspective aliasing coming from the perspective view
frustum projection through shadow map reparametrization. Orig-
inally pioneered by Stamminger and Drettakis [Stamminger and
Drettakis 2002], who try to remove perspective aliasing by sub-
jecting the shadow map to the same perspective transform as the
viewer, this idea was later refined by Martin and Tan [Martin and
Tan 2004] with Trapezoidal Shadow Maps, Wimmer et al [Wimmer

et al. 2004] with Light Space Perspective Shadow Maps and Chong
et al [Chong and Gortler 2004] with A Lixel for Every Pixel. How-
ever, all shadow map reparametrization methods deal only with per-
spective aliasing. They cannot increase the principal resolution of
shadow maps, which would be necessary for example to improve
projection aliasing, or in cases where the scene is simply too large
for the SM resolution. Furthermore, they work well only for the
case that light and view direction are orthogonal. If these directions
are parallel, they have to revert to uniform shadow mapping because
the shadow map parametrization runs across the whole screen, not
from near to distant points. Recently Lloyd et al [Lloyd et al. 2006]
have studied the use of more than one shadow map applied to the
sides or slices of the view frustum together with reparametrization
techniques intensively, with interesting results; all these approaches
can however only deal with perspective aliasing, but can do nothing
to alleviate projection aliasing. The work presented in this paper
aims to increase the resolution of shadow maps regardless of the
view frustum orientation or whether the artifacts come from per-
spective or projection aliasing.

Aila and Laine [Aila and Laine 2004] and Johnson et al [Johnson
et al. 2005] elegantly bypass the aliasing problem altogether but
depend on hardware extensions for realtime performance which are
not currently available.

Another approach to solve the aliasing problem are adaptive
shadow maps [Fernando et al. 2001] (see also section 6 below for
a comparison with Queried Virtual Shadow Maps), where shadow
maps are stored in a hierarchical fashion in order to provide more
resolution where it is required due to different aliasing artifacts.
However, the approach requires multiple readbacks and does not
map well to current graphics hardware. Lefohn [Lefohn et al.
2005] has proposed an extension that makes better use of the GPU,
whereas Arvo [Arvo 2004] slices the lightview to increase the res-
olution of the SM.

Second depth shadow mapping [Wang and Molnar 1994] can be
used to reduce problems due to depth quantization and self occlu-
sions. Brabec et al. [Brabec et al. 2002] improve uniform shadow
map quality by focusing the shadow map to the intersection of the
viewfrustrum with the scene.

An excellent overview of shadow mapping and shadow algorithms
in general can also be found in Möller and Haines’ Real-Time Ren-
dering book [Möller and Haines 2002], as well as in [Hasenfratz
et al. 2003].

3 Virtual Tiled Shadow Mapping

We first present Virtual Tiled Shadow Mapping. This is a brute-
force approach for increasing the resolution of the shadow map be-
yond the maximum texture size supported by the hardware. The
basic algorithm is as follows:

1. Allocate the biggest shadow map texture supported by the
GPU. For example 4096×4096.

2. Partition the shadow map along the shadow map x- and y-axis
into n×n (e.g. 16×16) equally-sized tiles (each tile using the
full shadow map texture resolution of e.g. 4096x4096 texels,
i.e. the effective resolution of the full shadow map in this
example is (16∗4096)× (16∗4096) = 65536×65536).

For each tile

(a) Render a shadow map into the shadow map texture (us-
ing culling to the light frustum of the tile and overwrit-
ing the shadow map for the previous tile).

(b) Use it immediately to shadow (modulate) the part of the
scene which is covered by the current shadow map tile.

There are two ways to implement the loop over the tiles: multi-pass
shadowing and deferred shadowing.

3.1 Multi-Pass Shadowing

One way to apply successive shadow map tiles to the scene is by
multi-pass rendering. In the first pass, the scene is rendered nor-
mally (with full shading and depth-writes enabled), with the first
shadow map tile applied to it. For each subsequent shadow map
tile, the scene is rendered again, but only shadow mapping using
the relevant tile is applied to the frame buffer. Pixels falling outside
the shadow map tile are suppressed. Depth writes and shading are
disabled and the depth comparison function is set to EQUAL in those
passes (depending on driver support, it can make sense to substitute
LESSEQUAL for EQUAL).

3.2 Deferred Shadowing

Multi-pass shadowing, although easy to implement, comes with a
significant performance overhead of rendering the whole scene sev-
eral times. To speed up the application of the shadow map tiles
to the scene, we use a variation of deferred shading we call “de-
ferred shadowing” where the shadowing is done using a linear depth
buffer of the scene instead of re-rasterizing the scene geometry and
the information needed to do the next shadowing pass, i.e., the next
shadow map tile, is created on the fly between the passes. The scene
is first rendered to a texture that stores eye-space depth, called the
Eye-Space Depth Buffer. Each subsequent tiled shadowing pass
can then read this texture and calculate the world-space position
of the visible surface at each pixel using the screen coordinates
and the depth stored in the Eye-Space Depth Buffer. The world-
space position is then shadowed using the shadow map tile as be-
fore. Note that storing the unmodified eye-space z-coordinate in the
Eye-Space Depth Buffer guarantees that the shadow map lookup
produces the same results as if the original scene objects were used
for shadow mapping. This is important because any other method
of obtaining the z-value, e.g., using window-space z-coordinates
(which is highly non-linear) or a fixed-precision w-buffer (if it were
still supported on current hardware) would inevitably lead to image
artifacts. In detail this works as follows:

1. In a first pass, render the scene as described above, but into
a 4 component 32bit floating point render target. In the pixel
shader, store the unmodified eye-space z-coordinate into the
α-component. This component forms the Eye-Space Depth
Buffer (however for simplicity, we refer to the whole 4 com-
ponent target as the Eye-Space Depth Buffer). The color of
each pixel in the object when lit by this light (ignoring shad-
owing) is written to the RGB channels.

2. For each shadow map tile

(a) Render a shadow map into the shadow map texture as
with Multi-Pass Shadow Mapping.

(b) Instead of rendering the geometry for the whole scene
again, render a full-screen quad with the Eye-Space
Depth Buffer bound as a texture.

(c) In the pixel shader for each fragment, look up the eye-
space depth of the fragment in the Eye-Space Depth
Buffer’s alpha-channel and unproject it into world space
(see below). Using the unprojected fragment, calculate
the shadowing term. Then modulate the already-shaded
RGB value from the Eye-Space Depth Buffer with the
shadowing term.

(d) The resulting shaded and possibly shadowed fragment
is then written to the frame buffer.

The pixel shader operations in the individual passes are quite
straightforward, with the exception of the unproject operation. Un-
like a standard viewport unprojection, which transforms from win-
dow (xw,yw,zw)-coordinates to eyespace (xe,ye,ze)-coordinates,
this operation has to deduce eye-space (xe,ye,ze) from (xw,yw)
(given as texture coordinates, i.e. running from 0 to 1) and ze. This
can be done using the following matrix transform:

 xe
ye
ze

 = ze ·

 1
ax

0 − bx
ax

0 1
ay

− by
ay

0 0 1

·

 2 0 1
0 2 −1
0 0 1

·

 xw
yw
1

(1)

where the parameters ax, ay, bx, by in the first matrix should be
taken from the projection matrix P supplied to the graphics API:

P =

ax 0 bx 0
0 ay by 0
0 0
0 0 1 0

See figure 5 for a comparison between Multipass and Deferred
Shadowing.

4 Queried Virtual Shadow Mapping

4.1 Smart Refinement Preferred

Virtual Tiled SMing is a brute force approach, which makes its
practical applicability limited, due to the quadratic increase in the
number of SM-tiles which need to be generated to increase the SM
resolution by one SM-texture extent. What we would like to do in-
stead is to adaptively refine the shadow map only where necessary:
near the eye-point, and in regions with high projection aliasing. We
would like to refine to a high level (n≥ 16, i.e. ≥ 256 SM-tiles), but

(a) 40962 conventional SM (b) 32×32 20482 QVSM

Figure 4: Conventional shadow mapping using LiSPSM exhibits undersampling artifacts on the trees in the foreground. The image on the
right was created using Queried Virtual Shadow Maps.

Figure 5: Performance comparison of Multi-pass and Deferred Vir-
tual Tiled Shadow Mapping: 10,000 objs, 1,6 Mtris, 4×4 SM-tiles
on a GeForce 6600GT with 256MB, Pentium4 2.4GHz (1GB).

do it fast enough so it can be done each frame, and without breaking
the GPU friendliness of the algorithm. One hypothetical way to do
this is as follows. Do not shadow the scene directly, but write the
results of the shadowing passes into an extra 1× f loat texture the
size of the frame buffer (“shadow result texture”). Then refine the
shadow map in quad-tree fashion: First, shadow the whole shadow
result texture with a single shadow map tile; then split the tile into
2×2 subtiles, and shadow the shadow result texture with each sub-
tile, noting how much the increase of the effective shadow map
resolution improves the shadow result texture in each tile. If the
improvement achieved by the refinement is small enough, stop pro-
cessing this tile further. If not, split this tile again into 2×2 subtiles,
and so on. Compared to the brute force approach, this would lead
to a greatly reduced number of required shadow map tiles. Unfortu-
nately the GPU is very limited in its ability to execute such “smart”
algorithms efficiently, especially those using even moderately com-
plex data structures, such as quadtrees. Therefore we need to move
the decision whether to further refine a shadow map tile to the CPU.
The only straightforward way to pass the necessary information to
the CPU would be reading back the whole shadow result texture
after each refinement step and counting the changed pixels, which
would be prohibitively expensive.

4.2 Queried Refinement: GPU Friendly & Smart

Instead, we have come up with a novel use of the GPU Occlusion
Query mechanism, which counts the number of fragments emitted
from the pixel shader. Occlusion queries were introduced to sup-
port image-space bounding volume visibility tests, and have seen

mainstream support by graphics hardware vendors for some time
now. We use the mechanism for another purpose: when applying
a shadow map subtile to the shadow result texture, we instruct the
pixel shader to only produce a fragment if the resulting shadow
value differs from the previous refinement step (this can easily be
done by accessing the previous shadow result texture in the shader).
The number of produced fragments η , which is identical to the
number of changed pixels in the shadow result texture, is found
by bracketing the application of each shadow map tile with an Oc-
clusion Query. The CPU can then decide whether to further refine
a tile by comparing the value returned by its corresponding occlu-
sion query with a threshold value ηmin: if a number of pixels larger
than ηmin have changed, the tile is split into 4 subtiles, otherwise
the refinement for this tile stops. In addition we use the maximum
number of tiles allowed per shadow map axis, ξmax, as a second
refinement termination criterion. Thus, the decision whether or not
to refine a shadow map tile can be made without any frame buffer
readback, which allows the whole algorithm to produce larger ef-
fective shadow map resolutions in real time.

5 Jump Optimizations

Using the maximum SM texture size supported in hardware for the
virtual shadow map texture is, in general, not the best choice. This
comes from the fact that the minimum number of Virtual Shadow
Maps that need to be filled is 1 + 4 = 5 (the initial shadow map
plus one refinement step). The following two optimizations use
this observation, to speed up rendering by increasing the SM texture
size instead of splitting the SM:

5.1 Maximum Refinement Jump

This optimization makes use of the maximum tile refinement crite-
rion ξmax, the maximum allowed number of tiles per shadow map
axis. Before splitting a tile (of size s), we first test whether the maxi-
mum virtual shadow map resolution ξmax ·s could also be reached in
one step by switching to a larger shadow map texture (i.e., a higher
shadow map resolution) instead of splitting the tile. With ξ as the
current tile refinement level, we make the jump if ξmax ·s≤ smax ·ξ .
Since we know that we will reach the maximum user defined virtual
shadow map resolution for this tile and therefore will not refine this
tile further, we turn off querying for the shadowing step.

(a) 40962 conventional SM

(b) 32×32 20482 QVSM

Figure 6: Strong projection aliasing (a) is greatly reduced by
QVSM (b).

5.2 Opportunity Jump

The Opportunity Jump optimization uses a heuristic criterion to
predict the future development of η (the number of pixels in the
shadow result texture that changed through the last refinement step).
If the prediction is that η will become smaller than ηmin within a
“jump distance” (number of refinement steps) smax

s , then we again
do not refine the tile, but increase the shadow map texture size in-
stead. We assume the η decreases at least by a factor fη in each re-
finement step in the vicinity of ηmin; fη is a constant factor, which
can be set by the user according to his quality requirements (see Re-
sults section below for a discussion of meaningful values for fη).

We make the jump, if η ·
(

fη
) smax

s ≤ ηmin.

We again turn off querying for the shadowing step and stop any fur-
ther refinement because, in the unlikely case that the tile does not
reach the intended resolution, it would be disproportionally expen-
sive to split the tile further, because we would have to use 4 shadow
maps with s = smax (which would be too costly, since the premise is
that we do not use s = smax for the SM-tiles from the start because
of the cost of generating several smax× smax shadow maps).

6 Comparison with Adaptive Shadow Maps

Our algorithm is similar in spirit to “Adaptive shadow maps” [Fer-
nando et al. 2001], and its GPU-based implementation, “Dynamic
Adaptive Shadow Maps on Graphics Hardware” [Lefohn et al.
2005], in that it also uses a quadtree scheme to refine the shadow
map (which is a more or less obvious choice). However, instead
of trying to predict the required shadow map resolution for each
camera pixel, we simply stop the refinement when we discover that

the resolution is high enough. The efficiency of this mechanism
allows us to perform the complete refinement procedure for each
frame. This is in contrast to adaptive shadow maps, which have
to cache the recently used shadow tiles for best performance - an
approach which is not well suited to dynamic scenes (see the large
performance drop for this case in [Lefohn et al. 2005], even though
the test scene consists only of a single tree on a small quad). This
also means that we do not need persistent video memory for cached
tiles.

7 Results

Figure 9: Performance comparison between Virtual Tiled and
Queried Virtual SMing along path in forest test scene.

Figure 10: Performance comparison along path in forest test scene
for several values for QVSM threshold parameter ηmin.

Figure 3 depicts the test scene used for this paper. It has a large
number of high frequency shadow casters (branches), which exhibit
self shadowing as well as receiving shadows in an irregular manner
by being far from being able to be well approximated by a shadow
receiving plane. It also quite naturally leads to the eye-point be-
ing potentially very near to a shadow receiver in the form of low
hanging branches or the trunk of a tree therefore making it harder
to hide shadow mapping artifacts. In addition the hilly structure of
the ground gives rise to projection aliasing.

Unless otherwise noted, all results were created on a ATI Radeon
X1900XTX with 512 MB of RAM and a Pentium4 3.4 GHz (2 GB
RAM).

Figure 9 shows frame time curves from a forest scene with 5×106

triangles rendered into a 1024× 1024 frame buffer. The upper-
most curve depicts brute force Virtual Tiled SMing, using 16× 16
40962 shadow maps; QVSM 1 & QVSM 2 show Queried Virtual

(a) 40962 conventional SM (b) 32×32 20482 QVSM

Figure 7: Quality comparison in forest test scene, rendered to 10242 frame buffer. Screenshot taken along path whose frame times are
depicted in figure 9. The effective SM resolution applied to the scene on the right is 65,5362, 256 times larger than the SM on the left.

(a) 40962 uniform (b) 40962 LiSPSM (c) 20482 32×32 tiled (d) 20482 32×32 queried (e) 20482 32× 32 queried +
Jump Optimization

Figure 8: Comparison of the different techniques using a 512× 512 frame buffer, 32× 32 tiles maximum refinement and a 20482 shadow
map texture (framerates can be seen in the upper right corner).

SMs with 20482 SM-tiles, 32×32 maximum refinement and jump
optimizations to 40962 using ηmin = 2500 and ηmin = 0 respec-
tively. The SM-curve finally gives the frame times for conventional
SMing using the maximum 40962 shadow map texture currently
supported in hardware (leading to greatly reduced shadow quality).
LiSPSM [Wimmer et al. 2004] was active for all SM renderings.
One can see that for ηmin = 0, i.e. the exact same shadowing qual-
ity, Queried Virtual SMs are more than 4 times faster than brute
force Virtual Tiled SMing; for ηmin = 2500, which still gives excel-
lent shadow quality, Queried Virtual SMs are nearly 15 times faster.
The effective Virtual SM resolution used to shadow the scene is
32×2048 = 65536, as compared to 4096 for conventional SMing.
Figure 7 shows a screenshot along the path, comparing the visual
quality of conventional SMing and QVSMing.

The frame times for several values of ηmin (the minimal number
of pixels that need to change in a SM-tile refinement step for the
tile to be refined further) along the same forest path are shown in
figure 10. One can see that the frame times fluctuate more, the
smaller ηmin becomes. This is due to the fact that a smaller ηmin
makes the algorithm more sensitive towards changes in the scene
(eye position, light direction etc), leading to more fluctuation in the

number of created SM-tiles.

Figure 11 compares frame times for jump optimizations with
fη = 1

4 . One can see that Opportunity Jumping has, in general,
the greater effect. What one can also see from the curve is, that Op-
portunity Jumping also has a very beneficial influence on the maxi-
mum frame times, in that it cuts the frame time spikes, contributing
to a smoother framerate. Having observed the behavior of η in the
vicinity of ηmin, fη should be chosen to lie between fη = 1

2 to 1
8 .

fη = 1
2 is a very conservative assumption, while fη = 1

8 is rather
aggressive and can lead to some minor artifacts when a tile gets not
refined to the desired quality; fη = 1

4 in general is a good compro-
mise in practice.

Figure 4 shows typical undersampling artifacts on the trees in the
foreground, despite using LiSPSM. QVSM (depicted on the right)
shadows the scene subpixel accurate, using 19 SM-tiles (17×20482

and 2× 40962; the latter coming from optimization jumps) giving
an effective SM resolution of 65,5362. Figure 6 shows strong pro-
jection aliasing on the right due to self shadowing. QVSM on the
left removes the projection aliasing nearly completely; note that the
high precision of the resulting shadow reveals the nature of the un-

Figure 11: Performance comparison along path in forest test scene
for QVSM Jump Optimzations.

derlying geometry by showing its triangular nature - one can see
that the terrain of the scene is much coarser than the trees.

The number of SM-tiles generated by the algorithm depends on the
choice of ξmax, ηmin and smax and the size of the frame buffer.
For quad-splitting of the SM-tiles the number of SM-tiles gener-
ated by the algorithm is 1+4 ·k+ l jump−opt , i.e. {1,5,9,13,17, }̇+
l jump−opt , where l jump−opt is the number of tiles generated by jump
optimizations. In practice we found that for our test scene and frame
buffer size, a typical case would be k = 4 and l jump−opt = 2 lead-
ing to 19 SM-tiles. Note that having 6 SM-tiles is a lower bound
in practice, since the necessary initial refinement step from 1 to 4
SM-tiles already leads to the generation of 5 SM-tiles overall; if
this is followed by a jump optimization refinement, then we arrive
at 5 + 1 = 6 SM-tiles (having less SM-tiles would mean that brute
force refinement into 2×2 SM-tiles would be the better choice). In
practice the initial refinement step typically is followed by at least
one further refinement step and a jump optimization refinement,
leading to (k = 2,l jump−opt = 1) 10 SM-tiles overall.

Figure 8 shows a comparison between different shadow mapping
approaches and maximum refinement level ξmax. One can see that
sample redistribution methods, represented here by LiSPSM, can-
not sufficiently increase the effective shadow map resolution for this
view direction.

For the refinement parameter smax, we found that for an NVidia
GeForce 6600GT with 256MB of RAM, 1024×1024 shadow map
textures together with smax = 2048 proved to be efficient, whereas
for an ATI Radeon 1900XTX with 512MB of RAM, using 2048×
2048 with smax = 4096 proved to be a good choice (both graphics
cards support a maximum texture resolution of 4096×4096).

Figure 5 shows a performance comparison of Multi-pass and De-
ferred Virtual Tiled Shadow Mapping. One can see that for scenes
which have a high transformation load, deferred shadowing gives
the expected near-constant frame time.

One problem that could arise in practice would be visible SM-tile
boundaries in the resulting shadow due to precision issues. We
did not observe such problems in our implementation, but should
this problem arise, it would be very easy to fix, by simply making
the SM-tiles overlap by a slight amount. Overlapping the SM-tiles
leads to no artifacts, since the shadowing result does not need to be
combined with the existing shadow result texture value, but over-
writes previous results. In addition higher refined SM-tiles will be
generated later than lower refined ones so there is also not even a
potential reduction in quality in the small overlap area.

Since shadow mapping and its artifacts (or absence

thereof) are best observed in motion, we refer you to
http://www.cg.tuwien.ac.at/research/vr/vsm, where you can
find some demonstration videos.

A non-scientific version of this paper was published as an article
in ShaderX 5 ([Giegl and Wimmer 2007]) from the ShaderX book
series; an executable and sourcecode samples can be found on the
CD-ROM accompanying the book.

7.1 Extensions and Optimizations

The following list some further optimizations that can be applied to
the algorithm together with some results:

1. Instead of always splitting each SM-tile into 2× 2 subtiles
(quad-splitting), one can also split it along each SM-axis al-
ternatingly (binary-splitting). Theoretically this would al-
low the algorithm to better adapt itself to scenarios, where
the required SM resolution differs between the two SM-axes.
We have implemented this extension and have observed that
frame times were, in general, higher than with quad-splitting.
An analysis of the created SM tiles shows, that the problem is
twofold: First, in many cases there is not enough difference
in required SM-resolution along each SM-axis; this means
that in the end binary-splitting does a quad-split - but it costs
2+2×2 = 6 tile generations (first split the tile into 2 subtiles
along one axis, then split the 2 subtiles into 2 sub-subtiles
each), instead of just 2×2 = 4 if we do the quad-split imme-
diately. Second, binary-splitting only gives information about
the refinement status along one SM-axis in each refinement
step; so even if this is not necessary the algorithm in many
cases has to do “one more split”, to make sure that the tile res-
olution is adequate along both SM-axis. In addition, binary-
splitting is harder to combine with jump optimizations effi-
ciently, again due to the fact that in each refinement step only
information about a single SM-axis is available. We conclude
that the cost of binary-splitting outweighs its benefits for prac-
tical applications.

2. Another idea would be to not split into 2× 2, but into nsub ×
nsub (nsub = 3,4, . . .) subtiles in each refinement step. We
have included this in our algorithm, but, again, this lead to
worse frame times in all test scenes. This is because the num-
ber of generated SM-tiles becomes extremely large, even if
only one tile is refined twice (which is typically the case sim-
ply due to perspective aliasing near the eye-point): Even for
3×3 splitting, this already leads to 1+2× (3×3) = 19 tiles
(the initial tile, a subtile and sub-subtile), compared to 9 tiles
(1+2×4) for nsub = 2.

3. Using the relative metric ηrel <
npixels−changed−in−tile

npixels−in−tile
instead of the

absolute ηabs < npixels−changed−in−tile could be a better choice
for deciding whether to further refine a shadow map tile. The
problem here is to get npixels−in−tile:

(a) One possible way would be to reapply the shadow map
tile to the Eye-Space Depth Buffer (without shadow
map lookups, of course), again bracketed with an Oc-
clusionQuery, but always emitting a fragment in the
pixel shader if it lies within the current tile. The result
of the OcclusionQuery would then be npixels−in−tile.We
have tried this and unfortunately it the practical cost of
this operation was so high, that it outweighs any po-
tential benefit. See “Hardware Extension” below for a
potential future better way to get ηrel .

(b) A less accurate but faster method would be to calcu-
late the number of screen-space pixels in the projection
of the shadow map tile onto the ground plane of the
scene (trapezoid clipped to screen-space coordinates),
and use this as an approximation for npixels−in−tile. It
would of course depend on the characteristics of the
scene whether this approximation works well or not.

4. Another approach to deferred shadowing would be to write
the xyz-coordinates of each point into a float render target
(RT), using multiple-RT (MRT) functionality to write the
color to a second RT: We chose not to do so, since even mod-
ern graphics cards often only support MRTs having the same
bit depth; this would have meant that we would have to use
two 4× f loat RTs. Since the transformation given under 1
achieves the same result with using only one linear depth en-
try which can be stored conveniently in the alpha-channel of
just one 4× f loat RT, we chose this approach to implement
deferred shadowing.

8 Hardware Extension

We use the hardware occlusion query mechanism as a counter to
efficiently pass back information from the GPU to the CPU. This
mechanism is like a tiny loophole, since only one value can be
passed back per rendering pass, and increasing the counter is linked
to emitting a color value from the pixel shader (which, fortunately,
in our case is what we want to do anyway). We are sure that
many more smart, adaptive algorithms could be combined with fast
GPU rendering if this GPU functionality would be extended to in-
clude several registers like the occlusion query fragment counter,
which could e.g. be incremented/decremented (possibly by an ar-
bitrary amount), and which would support atomic min/max op-
erations. Since these operations are independent of the order of
execution (with the exception of overflows in the case of decre-
ment/subtraction), they would be compatible with the highly par-
allel vector processor design of modern GPUs. With just one ad-
ditional counter register, one could, for instance, count the total
number of pixels corresponding to the current shadow map tile in
addition to the number of pixels that have changed in the last re-
finement step, allowing us to employ different refinement metrics.
With 4 additional registers with min/max support one could find the
screen-space bounding box around the area influenced by a shadow
map tile, reducing the number of pixels that need to be touched
when applying a shadow map tile to the scene.

9 Conclusion

We have presented a novel approach to increase the effective resolu-
tion of a shadow map, without incurring the respective memory cost
and bypassing maximum texture size limits, by introducing Virtual
Tiled Shadow Maps. Starting with this brute force approach, we
have shown that it can be made faster by an order of magnitude by
employing the GPU’s occlusion query mechanism to get back in-
formation about the effect of a SM-tile refinement step to the CPU.
This information in turn can be used by the CPU to guide the re-
finement process. The refinement metric is directly correlated to
the number of pixels that changed in the scene due to the SM-tile
refinement, allowing the algorithm to reduce or even remove per-
spective and projection aliasing.

We have also proposed a hardware extension that should integrate
well with existing hardware architectures, which could be used to

improve the efficiency of the algorithm even further and allow for
other smart algorithms that combine GPU power with CPU versa-
tility.

Acknowledgements

This research was supported by the EU in the scope of the Game-
Tools Project (www.gametools.org) (IST-2-004363).

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proc. Euro-
graphics Symposium on Rendering 2004, 161–166.

ARVO, J. 2004. Tiled shadow maps. In Proc. Computer Graphics Interna-
tional 2004, 240–247.

BRABEC, S., ANNEN, T., AND SEIDEL, H.-P. 2002. Practical shadow
mapping. Journal of Graphics Tools 7, 4, 9–18.

CHONG, H., AND GORTLER, S. J. 2004. A lixel for every pixel. In
Proceedings of Eurographics Symposium on Rendering 2004.

CROW, F. C. 1977. Shadow algorithms for computer graphics. Computer
Graphics (Proc. ACM SIGGRAPH 77) 11, 2, 242–248.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow maps. In
SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D graph-
ics and games, ACM Press, New York, NY, USA, 161–165.

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG, D. P.
2001. Adaptive shadow maps. In Proc. ACM SIGGRAPH 2001, 387–
390.

GIEGL, M., AND WIMMER, M. 2007. Queried virtual shadow maps. In
ShaderX 5 - Advanced Rendering Techniques, Charles River Media, 249–
262.

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND SILLION,
F. 2003. A survey of real-time soft shadows algorithms. In Eurographics
State-of-the-Art Reports.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R. 2005. The
irregular z-buffer: Hardware acceleration for irregular data structures.
ACM Trans. Graph. 24, 4, 1462–1482.

LEFOHN, A., SENGUPTA, S., KNISS, J. M., STRZODKA, R., AND
OWENS, J. D. 2005. Dynamic adaptive shadow maps on graphics hard-
ware. In ACM SIGGRAPH 2005 Conference Abstracts and Applications.

LLOYD, B., TUFT, D., YOON, S., AND MANOCHA, D. 2006. Warping
and partitioning for low error shadow maps. In Proceedings of the Eu-
rographics Symposium on Rendering 2006, Eurographics Association,
215–226.

MARTIN, T., AND TAN, T.-S. 2004. Anti-aliasing and continuity with
trapezoidal shadow maps. In Proc. Eurographics Symposium on Render-
ing 2004, 153–160.

MÖLLER, T., AND HAINES, E. 2002. Real-Time Rendering, Second Edi-
tion. A. K. Peters Limited.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Rendering
antialiased shadows with depth maps. Computer Graphics (Proc. ACM
SIGGRAPH 87) 21, 4, 283–291.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective shadow maps.
ACM Transactions on Graphics 21, 3, 557–562.

WANG, Y., AND MOLNAR, S. 1994. Second-depth shadow mapping. Tech.
Rep. TR94-019, University of North Carolina at Chapel Hill.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. Com-
puter Graphics (Proc. ACM SIGGRAPH 78) 12, 3, 270–274.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W. 2004. Light
space perspective shadow maps. In Proc. Eurographics Symposium on
Rendering 2004, 143–151.

