
ls
s-
ng
ft-
ns.

ow
nts
ibes
he
, §5
ap
me
er-
and
ys-
ta-

es
tly
es

in
e,
tric
g
rt is
r-
s

ng
se
-

ll

ds
v-
ly-
he
is

re
el.

de
s of
he
fine

el
h
not
of

ms,
§1.

on

The Clipmap: A Virtual Mipmap
Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones

Silicon Graphics Computer Systems
ABSTRACT
We describe theclipmap, a dynamic texture representation that

efficiently caches textures of arbitrarily large size in a finite
amount of physical memory for rendering at real-time rates. Fur-
ther, we describe a software system for managing clipmaps that
supports integration into demanding real-time applications. We
show the scale and robustness of this integrated hardware/software
architecture by reviewing an application virtualizing a 170
gigabyte texture at 60 Hertz. Finally, we suggest ways that other
rendering systems may exploit the concepts underlying clipmaps
to solve related problems.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture—Graphics Processors; I.3.3
[Computer Graphics]: Picture/Image Generation—Display Algo-
rithms; I.3.4 [Computer Graphics]: Graphics Utilities—Graphics
Packages; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Color, shading, shadowing, and texture.

Additional Keywords: clipmap, mipmap, texture, image exploi-
tation, terrain visualization, load management, visual simulation.

1 INTRODUCTION
Textures add important visual information to graphical applica-

tions. Their scope, fidelity, and presentation directly affects the
level of realism and immersion achievable for a given object or
environment. From being able to discern each brush stroke in every
mural in a virtual Vatican to counting tire tracks in the sand half-
way around a simulated globe, the amount of visual information
applications require is growing without bound. It is this enormous
visual dynamic range that illuminates the limitations of current
texture representations and defines our problem space.

Specifically, our representation addresses all of the issues rele-
vant to the real-time rendering of the earth’s surface as a single
high resolution texture. Representing the earth with one meter tex-
els requires a 40 million by 20 million texel texture and an overall
square, power of two mipmap size of approximately 11 petabytes.

We identified six goals for an effective solution to this problem.
First, the new texture system must support full speed rendering
using a small subset of an arbitrarily large texture. Second, it must
be possible to rapidly update this subset simultaneously with real-
time rendering. Third, the texture technique must not force subdi-
vision or other constraints onto geometric scene components.
Fourth, load control must be robust and automatic to avoid distract-
ing visual discontinuities under overload. Fifth, it must be possible
for the representation to be seamlessly integrated into existing
applications. Finally, the incremental implementation cost should
be small relative to existing hardware.

Our initial clipmap implementation addresses these goa
through a combination of low-level hardware and higher-level sy
tem level software. The hardware provides real-time renderi
capabilities based on the clipmap representation, while the so
ware manages the representation and interfaces with applicatio
This paper describes our clipmap implementation and reviews h
well it meets the goals and challenges already outlined: §2 prese
past approaches to managing large texture images, §3 descr
exactly what a clipmap is and what it achieves, §4 explains how t
clipmap is updated and addresses memory bandwidth issues
shows how the clipmap representation is a modification of mipm
rendering, §6 describes how clipmaps are generalized to overco
hardware resource and precision limits, §7 discusses the high
level software used to update clipmaps, manage system load,
deal with data on disk, §8 examines several applications of the s
tem, and finally, §9 considers the success of our first implemen
tion and suggests directions for further research.

2 PREVIOUS APPROACHES
The common method for dealing with large textures requir

subdividing a huge texture image into small tiles of sizes direc
supportable by typical graphics hardware. This approach provid
good paging granularity for the system both from disk to ma
memory and from main memory to texture memory. In practic
however, this approach has several drawbacks. First, geome
primitives must not straddle texture-tile boundaries, forcin
unwanted geometric subdivision. Second, texture border suppo
required for each level of each tile if correct sampling is to be pe
formed at tile boundaries. Lastly, the level of detail mechanism
take place at the granularity of the tiles themselves—produci
disconcerting visual pops of whole texture/geometry tiles. The
limitations limit visual effectiveness and add an extra level of com
plexity to geometric modeling, morphing, and LOD definition—a
of which must take the texture tile boundaries into account.

The higher-quality system of Sanz-Pastor and Barcena [4] blen
multiple active textures of differing resolutions. Each of these le
els roams based on its dynamic relationship to the eyepoint; po
gons slide from one texture to another with textures closer to t
eyepoint at higher-resolution. The drawback of such a system
that geometry is still tied directly to one of these textures so textu
LOD decisions are made at the per-polygon rather than per-pix
Developers must also obey a complex algorithm to subdivi
geometry based on the boundaries between the different texture
different resolutions. Further, texture LOD choices made by t
algorithm are based on coarse eyepoint range rather than the
display space projection of texel area.

An advanced solution outlined by Cosman [1] offers per-pix
LOD selection in a static multiresolution environment. Althoug
similar to our clipmap approach in some ways, Cosman does
address look-ahead caching, load control, or the virtualization
the algorithm beyond hardware limits.

Although these approaches have solved large scale proble
they do not appear generalizable to fully address all six goals of

3 THE CLIPMAP REPRESENTATION

3.1 Observations about Mipmaps
The following review summarizes the key mipmap concepts

Author Contacts:{cct|migdal|mtj}@sgi.com

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

on-
re
ng

a

in
ze.
as

the
rar-

he
r-
r

al
ing

fine
d
e

e 4.

v-
l to

p
g a

. By
ly
of

0
er
line
ot

n-
e
he
d

which clipmaps are based. Amipmapas defined by Williams [6] is
a collection of correlated images of increasingly reduced resolu-
tion arranged, in spirit, as a resolution pyramid. Starting with level
0, the largest and finest level, each lower level represents the image
using half as many texels in each dimension: 1D = 1/2, 2D = 1/4,
and 3D = 1/8 the texels. The 2D case is illustrated in Figure 1.

When rendering with a mipmap, pixels are projected into mip-
map space using texture coordinates, underlying geometric posi-
tions, geometric transformations, and texture transformations to
define the projection. Each rendered pixel is derived from one or
more texel samples taken from one or more levels of the mipmap
hierarchy. In particular, the samples chosen are taken from the
immediate neighborhood of the mipmap level where the display’s
pixel-to-texel mapping is closest to a 1:1 mapping, a level dictated
in part by display resolution. The texels are then filtered to produce
a single value for further processing.

Given this simple overview of mipmap processing, we now ask
which texels within a mipmap might be accessed during the ren-
dering of an image. Clearly there can be many variations in the fac-
tors that control pixel to display projection, such as differing
triangle locations within a large database, so it may seem that all of
the texels are potentially used if the universe of possible geometry
is taken into consideration. Refer to Figure 2 for an illustration of
the relationship between eyepoint position and texel access.

Mipmaps are potentially fully accessed during rendering when
their size in texels is less than twice the size of the maximum dis-
play extent in pixels. This observation derives from interactions
between mipmap sample selection logic and finite display resolu-
tion. For example, when rendering a 327682 texel mipmap to a
10242 pixel display, the mipmap sample-selection logic will
choose the texels that are closest to having a 1:1 mapping to pixel
area. Thus it will use at most 10242 texels from a level before
accessing an adjacent level. Implementations that blend samples
from adjacent levels (as intrilinear filtering) potentially access
twice as many texels in each dimension. For an example of this
refer to the center diagram in Figure 2, where texels from level 1
are being fully used. If the eyepoint were just slightly closer, then
samples would be blended from both level 0 and level 1, but 10242

texels from level 1 would still be accessible. The corresponding
texels from level 0 needed to blend with these 10242 level 1 texels
are distributed over a 20482 texel extent in level 0.

When the indexing arithmetic for very large mimpaps is ana-
lyzed, it becomes clear that the majority of the mipmap pyramid
will not be used in the rendering of a single image no matter what
geometry is rendered. The basis of our system is this realization
that eyepoint and display resolution control access into the mip-

map and that in the case of the very large textures we are c
cerned with, only a minute fraction of the texels in the mipmap a
accessible. We can build hardware to exploit this fact by renderi
from the minimal subset of the mipmap needed for each frame—
structure we term a clipmap.

3.2 The Anatomy of a Clipmap
A clipmapis an updatable representation of a partial mipmap,

which each level has been clipped to a specified maximum si
This parameterization results in an obelisk shape for clipmaps
opposed to the pyramid of mipmaps. It also defines the size of
texture memory cache needed to fully represent the texture hie
chy.

3.2.1 Defining Clipmap Region with ClipSize
ClipSizerepresents the limit, specified in texels, of texture cac

extent for any single level of a clipmap texture. Each level of a no
mal mipmap is clipped to ClipSize if it would have been large
than ClipSize, as shown in Figure 3. All levels retain the logic
size and render-time accessing arithmetic of the correspond
level of a full mipmap.

Based on this mipmap subset representation, we further de
the Clipmap Stackto be the set of levels that have been clippe
from full mipmap-size by the limit imposed by ClipSize. Thes
levels are not fully resident within the clipmap; only a ClipSize2

subset is cached. These levels are the topmost levels in Figur
Below the Clipmap Stack is theClipmap Pyramid,defined as the
set of levels of sizes not greater than the ClipSize limit. These le
els are completely contained in texture memory and are identica
the corresponding portions of a full mipmap.

3.2.2 Defining Clipmap Contents with ClipCenter
Given the notion of clipping a mipmap to fit in a subset clipma

cache, we specify the data present in this cache by specifyin
ClipCenter for each stack level. AClipCenteris an arbitrary tex-
ture space coordinate that defines the center of a cached layer
defining ClipSize and ClipCenter for each level, we precise
select the texture region being cached by the ClipStack levels
our representation.

One implementation is to specify the ClipCenter for stack level
and derive the ClipCenter of lower levels by shifting the cent
based on depth. This forces each level to be centered along a
from the level 0 center to the clipmap apex. This center is the d
indicated at the top of Figure 4. This type of centering yields co
centric rings of resolution surrounding the level 0 ClipCenter. Th
center location may be placed anywhere in full mipmap space. T
image in Figure 5 shows an orthogonal view of a polygon (viewe

Figure 1: Mipmap Image Pyramid and Side-View Diagram

64x64
32x32
16x16

8x8
4x4
2x2
1x1

Eyepoint Near Eyepoint Far Eyepoint Oblique

Figure 2: Texel Access within a Mipmap

Figure 3: Clipmap Region within a Mipmap

ClippedClipped

Needed

Clipmap Stack

Clipmap Pyramid

ClipSize

Figure 4: Clipmap Stack and Pyramid Levels

his
vel
re

n
ge

-
8

ly

e

le

,
t
cal

ity

=
ws
e
ts
e

ss

ly
or-
ore
ing
and
of

can
el as
the
i-
ing
y
ss-
hen
d-
ess

left.

ge
from the “Eyepoint Near” position of Figure 2) that has been tex-
tured with a clipmap having a very small ClipSize in order to dem-
onstrate the concentric rings of texture resolution.

When the cache is insufficient, due either to an overly small
ClipSize or a poor choice of ClipCenter, the best available lower
resolution data from lower in the clipmap stack or pyramid is used.
This “clip texture accesses to best available data” nature is a sec-
ond reason why we chose the name clipmap for this approach.

In normal use, however, the ClipSize is set to equal or exceed the
display size, in which case the rings of resolution shown in Figure
5 are large enough that, with a properly chosen ClipCenter, these
rings form a superset of the needed precision. Thus, the subset
nature of clipmaps does not limit the texture sample logic—every
texel addressed is present in the clipped mipmap and the resulting
image will be pixel-exact with one drawn using the full mipmap,
meeting the first of the goals outlined for this texture system.

3.2.3 Invalid Border for Parallel Update
The previous subsection presents rendering from a Clipmap

Stack level as a static subset of the complete mipmap level; it does
not address the need to pre-page data needed for future frames con-
currently with rendering. In order to provide storage for paged data
and for load control, we introduce another parameter, theInvalid-
Border, defined as a border of texels existing within each stack
level that is InvalidBorder texels wide. Texels within the Invalid-
Border are inactive and are not accessed by the texel-sample index-
ing logic. They provide a destination region into which higher-
level software prefetches data. The size of the active portion of a
clip map is simply ClipSize minus twice the InvalidBorder, known
as theEffectiveSizeof each stack level. The relationship and posi-
tion of the InvalidBorder and EffectiveSize are illustrated in Figure
6.

3.2.4 TextureOffset for Efficient Update
The final fundamental parameter of our low-level clipmap repre-

sentation is theTextureOffset,the starting address used by the tex-
ture address generator to locate the logical center of a clipmap’s
EffectiveSize within the ClipSize2 memory region allocated for
each Clipmap Stack level. The addressing logic uses the Texture-
Offeset and modular addressing to roam efficiently through the
level’s ClipSize2 memory region as discussed in detail in §4, where

the process of clipmap updating and rendering is presented. T
offset is specified per level and affects addressing for the le
exactly as a texture matrix translation with a wrap-style textu
clamp mode.

3.3 Clipmap Storage Efficiency
Consider a 16 level 327682 clipmap to be rendered on a 10242

display. We begin our analysis with pixel-exact rendering. Give
the display size, we know that the upper bound on texture usa
from a single level is 20482, so we set the ClipSize to 2048. There
will be four clipped levels forming our Clipmap Stack and 12 lev
els in the Clipmap Pyramid. The storage required for this is 2042

texels * 4 levels + 4/3 *20482 texels for the pyramid = 42.7 MB at
2 bytes per texel. This perfect clipmap configuration requires on
42.7 MB of the full 2.8 GB present in the complete mipmap. A
more typical configuration using a 1024 ClipSize will achiev
attractive results using 10242*5 stack texels + 10242*4/3 pyramid
texels = 12.7 MB. Finally, a 512 texel ClipSize yields reasonab
results with 5122*6 stack texels + 5122*4/3 pyramid texels = 3.7
MB of storage.

In general, a 2nx2n clipmap with a ClipSize of 2m requires only
4m(n - m + 4/3) - 1/3 texels of texture storage. For full mipmaps
the storage needed is (4n+1 - 1)/3 texels. Both of the equations mus
be scaled by the number of bytes per texel to compute physi
memory use. Note that total mipmap storage is exponential inn
where clipmap storage is linear, underscoring the practical abil
of clipmaps to handle much larger textures than mipmaps.

Comparative storage use is tabulated in Table 1, where KB
1024 Bytes, and 16-bit texels are used. The final column sho
memory use for a 226x226 image large enough to represent th
earth at 1 meter per texel; the 34.7 MB clipmap requirement fi
nicely into the texture memory of a modern high-performanc
graphics workstation, confirming the ability of clipmaps to addre
the problem identified in §1.

4 UPDATING CLIPMAPS
Clipmap caches are by intent just large enough to effective

cache the texels needed to render one view. It is therefore imp
tant to update the cache as the viewpoint changes, typically bef
each frame is rendered. This update is performed by consider
the texture regions needed for each level as described in §3
loading them into texture memory. Moreover, to take advantage
the significant frame-to-frame coherence in cache contents, we
reuse cached texels in subsequent frames. We define each lev
an independently roaming 2D image cache that moves through
entire region of that level within the complete mipmap using toro
dal addressing, a commonly used approach in image process
applications [5]. We then update each level incrementally b
downloading the new data into the cache and letting this addre
ing scheme define the destination. The same logic is used w
reading memory to render the texture. The four steps of this loa
ing/addressing scheme are presented in Figure 7. The proc
begins with a 2D image centered in the cache as shown on the
We then specify a new ClipCenter, in this cased texels above and
to the right of the old center. Comparing the old and new ima

Figure 5: Rings of Texture Resolution

InvalidBorder

Figure 6: Clipmap with InvalidBorder and EffectiveSize

InvalidBorder

Effective
Size

Type and Size 5122 10242 40962 327682 671088642

Full Mipmap 682KB 2.7MB 42.7MB 2.7GB 10923TB

5122 Clipmap 682KB 1.1MB 2.2MB 3.7MB 9.1MB

10242 Clipmap 682KB 2.7MB 6.7MB 12.7MB 34.7MB

20482 Clipmap 682KB 2.7MB 18.7MB 42.7MB 131.7MB

Table 1: Clipmap Storage Requirements

che
o-
7
due
al
00
1/

160
sily

a
g
to

t to
is
r a

is

te-
-
o

e
g
D

s a
D

tes
he
3.
ent

ons
re
or
ev-
im-
re
ed

er
are
cu-

re
ts
y

he-
to
d

regions, note that the central texels are unchanged(SAME)in each,
so only the top(T), corner (C), and right (R) border areas are
updated, as indicated in the third diagram.

Using toroidal addressing, new data at the top of the image is
loaded at the bottom, data on the right is loaded at the left, and the
upper right corner is loaded at the lower left. Implementation is
easy: compute the virtual texel address by adding the ClipCenter to
the texel address and then use the remainder modulo ClipSize as
the physical address. The cache start address moves from (s/2, s/2)
to (s/2+d, s/2+d), so the TextureOffset for this level is set to this
new origin address, identifying the starting address of the cached
image to the addressing unit.

Given that each stack level roams independently based on its
center and assuming that we are centering all the levels based on
the same ClipCenter, we can visualize the complete multi-level
update process as shown in Figure 8.

This side view of the toroidal indexing scheme shows how the
entire set of stack levels appears to have moved when in fact all
updates are performed in place as described previously. The over-
lap areas are unchanged and require no update. In practice, this
area is relatively large so only minor paging at the edges is
required to update a clipmap stack. Since lower levels are coarser
resolutions as in normal mipmapping, the same movement of cen-
ter point will result in only half as much movement of a lower level
than the level above it, and less movement means less paging.

When movement of the TextureCenter is smaller than the
InvalidBorder for a given level, then the update regions can be
loaded while texture is being drawn with the previous center. This
is true because the InvalidBorder guarantees those texels will not
be used. This also allows large updates to be performed in an incre-
mental manner across multiple frames before the ClipCenter is
moved.

4.1 Update Bandwidth Considerations
In addition to rendering, implementations must also offer enough

texture download bandwidth to meet the demands implied by Clip-
map Stack depth, ClipSize, and the speed of eyepoint travel
through texture space as defined by ClipCenter. An upper limit to
cache update time is that time needed to replace all clipmap stack

levels. In the case of the 327682 clipmap with a 1024 StackSize
that our implementation is designed to handle, reloading the ca
levels requires 10MBytes of texture paging. Given memory-t
graphics rates of 270MBytes per second, a flush requires 1/2th

second. Fortunately, the cache need not be completely flushed
to the texel reuse and incremental update allowed by toroid
addressing. With this efficiency, the ClipCenter can be moved 10
texels on the highest level map in this configuration in less than
60th of a second. This corresponds to an eyepoint speed of 134,
miles per hour when 1 meter texels are used, a rate that ea
exceeds our update goals.

5 RENDERING WITH CLIPMAPS
Rendering with a clipmap is much the same as rendering with

mipmap. The only modifications to the normal mipmap renderin
are slight changes to the level-of-detail selection algorithm and
the texture memory addressing system. However, it is importan
note that building clipmapping support into low level hardware
crucial. With this in mind, here are the steps to sample texture fo
given pixel using a clipmap representation:

1. Determine the S, T coordinates for the current pixel. This
done exactly as addressing an equivalent mipmap.

2. Calculate the level of detail based on normal mipmapping cri
ria. This calculation yields a floating-point LOD where the frac
tional part of the number represents blending between tw
LODs. If this LOD resides completely in the pyramidal portion
of the clipmap then we simply proceed with addressing th
appropriate LODs as a normal mipmap. If the finer LOD bein
blended resides in the Clipmap Stack and the coarser LO
resides in the pyramid, then we address the coarser LOD a
mipmap but continue on the clipmap path for the finer LO
addressing.

3. Calculate the finest LOD available given the texture coordina
established in Step 1. This calculation is done by comparing t
texture coordinate to all of the texture regions described in §
This calculation has to be done in case the texels are not pres
at the LOD requested. There are several hardware optimizati
that can be performed to make this Finest LOD for a textu
coordinate calculation tenable and efficient in hardware. F
cost sensitive solutions, a restriction can be made where all l
els must be centered concentrically, such that calculating a s
ple maximum distance from the TextureCenter to the textu
coordinate generated can yield the finest available LOD bas
on the following:
Sdist = roundUp(abs(Scenter – s))
Tdist = roundUp(abs(Tcenter – t))
MaxDist = max(Sdist, Tdist)
FinestLODAvailable = roundUp(log2(MaxDist) – log2(ClipSize))

The equation for FinestLODAvailable is adjusted to consid
the InvalidBorder designed to prevent accessing texels that
in the process of being asynchronously updated. Having cal
lated the LODmip and LODAvailable, we simply use the
coarser of the two. We emphasize that it is possible to configu
a system and application where the LODAvailable never limi
the LOD calculation. This is done by selecting a sufficientl
large ClipSize and placing the ClipCenter appropriately.

4. Convert the s and t coordinates into level-specific and cac
specific coordinates. First, we split the calculation into two
account for the blending between two active LODs (fine an
coarse).
Sf = (s >> LODclip) – 0.5
Tf = (t >> LODclip) – 0.5
Sc = (s >> (LODclip + 1)) – 0.5
Tc = (t >> (LODclip + 1)) – 0.5

Figure 7: 2D Image Roam using Toroidal Addressing

Old Old

New

Same Same

T C

R R

TC

s d

SameR

TC

Roaming Stack

Toroidal Update

Figure 8: 2D Image Roam of Complete Stack

the
ree
d in

ons

ff-
by
d

le-
er
e

used
(as
and

ten-
ure

-
to
ps

rd-
ple-
e

re,
le-
ng
ace.
n-
he
ot
n-

ge
xel

ive
ads,
s
ted

act-
ort
on
p
nse
tan-
Then, determine the offsets necessary to address the fine and
coarse LOD given the data currently cached inside each level.
Sfoff = ClipCenter[LODclip].S – TextureSize[LODclip]/2
Tfoff = ClipCenter[LODclip].T – TextureSize[LODclip]/2
Scoff = ClipCenter[LODclip+1].S – TextureSize[LODclip]/2
Tcoff = ClipCenter[LODclip+1].T – TextureSize[LODclip]/2

Finally, determine the actual S, T address within the clipmap
level cache for both the fine and coarse LODs by using the
actual texture coordinate, the recently computed center offset,
and the user specified TextureOffset. These addresses are inter-
preted using modular addressing consistent with the way that §4
describes cache updates based on TextureOffset.
Sclipfine = (Sf – Sfoff – TextureOffset[LODclip].S)% ClipSize
Tclipfine = (Tf – Tfoff – TextureOffset[LODclip].T)% ClipSize
Sclipcoarse = (Sc – Scoff – TextureOffset[LODclip+1].S)% ClipSize
Tclipcoarse = (Tc – Tcoff – TextureOffset[LODclip+1].T)% ClipSize

5. Use the two sets of texture coordinates (fine and coarse) to gen-
erate a filtered texture value for the pixel exactly as for a mip-
map texture.

6 VIRTUAL CLIPMAPS
Having defined the low-level architecture of the clipmap repre-

sentation, we consider a key implementation issue—the numerical
range and precision required throughout the texture system. This
issue is central because it controls cost and complexity in an imple-
mentation, factors that we seek to minimize as goals of our devel-
opment. Previous mipmap implementations have supported texture
sizes as large as 28 to 212 in each dimension, far less than the 226

needed by a 1 meter per texel whole earth texture. Thus, having
first solved the storage problem for huge texture images, we must
now find an affordable way to address their compact representa-
tion.

The hardware environment of our first implementation [3] dic-
tated that directly enlarging the numerical range and precision
throughout the system to match the needs of 27-level and larger
clipmaps was not practical. The impact would have included bus
widths, gate counts, circuit complexity, logic delays, and packag-
ing considerations; full-performance rendering would have been
impossible. These issues, along with the practical matter of sched-
ule, encouraged us to solve the 226 clipmap problem within the 215

precision supported in hardware.
Our approach to virtualizing clipmaps is based on the observa-

tion that while the polygons comprising a scene extend from the
eyepoint to the horizon, each individual polygon only subtends a
portion of this range. Thus, while a scene may need the full 27-
level clipmap for proper texturing, individual polygons can be
properly rendered with the 16-level hardware support so long as
two conditions are met: the texture extent across each polygon fits
within the hardware limit, and an appropriate adjustment is made
as polygons are rendered to select the proper 16 levels from the full
27 level virtual clipmap.

We implement virtual clipmaps by adding two extensions to the
clipmap system. First, we provide a fixed offset that is added to all
texture addresses. This value is used to virtually locate a physical
clipmap stack within a taller virtual clipmap stack, in essence mak-
ing one of the virtual stack levels appear to be the top level to the
hardware. Second, we add a scale and bias step to texture coordi-
nate processing. This operation is equivalent to the memory
address offset but modifies texture coordinates rather than texel
memory addresses. In concert, these extensions provide address
precision accurate to the limit of either user specification or coor-
dinate transformation. With a 32-bit internal implementation, this
is sufficient to represent the entire earth at 1 centimeter per texel
resolution, which exceeds our stated goal.

This virtualization requires that the low-level clipmap algorithm
be extended to address a sub-clipmap out of an arbitrary clipmap

when the depth exceeds the directly supported precision. Given
stack and pyramid structure defined in a clipmap, we observe th
possible types of addressing that must be supported as illustrate
Figure 9.

1. Address a stack level as a stack level. No address modificati
necessary other than the upstream scale and bias.

2. Address a stack level as a pyramid level. Need to provide an o
set into the level to get to the correct data. This can be done
starting from the center texel, and offsetting backwards to fin
the origin texel of the sub-level based on desired level size.

3. Address a pyramid level as a pyramid level. This can be imp
mented by knowing the actual level size, finding the cent
texel, and offsetting backwards to find the origin texel of th
sub-level based on desired level size.

These three cases define the additional addressing hardware
to switch between the normal stack address processing
described in §5), sub-addressing as defined above for cases 2
3, and normal mipmap addressing. With these addressing ex
sions, software can select sub-clipmaps and implement text
coordinate scale and bias.

Why add this additional complexity to an otherwise simple low
level implementation? Because there is seemingly no limit
desired texture size. While the size of directly supported clipma
will likely grow in future implementations, so will the demand for
larger textures. Since each extra level directly supported by ha
ware forces expensive precision-related system costs onto im
mentations, we believe that virtual clipmap support will always b
useful.

7 DYNAMIC CLIPMAP MANAGEMENT
Having described the clipmap representation, the architectu

and the refinements needed to virtualize a clipmap beyond imp
mentation limits, we now consider the remaining issue—keepi
the clipmap updated as the eyepoint moves through texture sp
This is a significant part of any implementation, since the treme
dous efficiency of the clipmap representation reduces only t
number of texels resident in texture memory at any one time, n
the total number of texels in the mipmap. A series of images re
dered interactively may visit the entire extent of the texture ima
over the course of time; an image which for a one meter per te
earth is an intimidating 10,923 TBytes of data.

Our goals for dynamic clipmap management are these: effect
use of system memory as a second-level cache to buffer disk re
efficient management of multiple disk drives of differing speed
and latencies as the primary source for texture images, automa
load management of the clipmap update process to avoid distr
ing visual artifacts in cases of system bandwidth overload, supp
for high resolution inset areas (which implies a sparse tile cache
disk), and finally, complete integration of this higher-level clipma
support into software tools in order to provide developers the se
that clipmaps are as complete, automatic, and easy to use as s
dard mipmaps.

Pyramid from Pyramid

Stack from Stack

Pyramid from Stack Virtual
Clipmap

Real Clipmap

Figure 9: Virtual Addressing in Stack and Pyramid Levels

ms
on
ag-
e

ble
re
re
m

cify
e
as

he
nd
e
the
nd

ve
is-
ed.
the
ter
ons
e,
a-
ca-
ap
the
s
a

ses

s-
are
of
le-
red
d,
ry
on
ive-
ng
his
id

ys
ed,
the
ent
evel
ap

ing
re-
te.

on
ata
-
at
7.1 Main Memory as Second-Level Cache
To use main memory as a second level cache we must optimize

throughput on two different paths: we need to optimize throughput
from disk devices to memory and we need to optimize throughput
from memory to the underlying hardware clipmap cache. In order
to optimize utilization of system resources we use separate threads
to manage all aspects of data flow. We need at least one process
scheduling data flow, one process moving data from disk to mem-
ory, and one process incrementally feeding clipmap updates to the
graphics subsystem. In the context of our high-level graphics soft-
ware toolkit, IRIS Performer [2], this means that scheduling is
done by the software rendering pipeline in the Cull process, down-
loading of data to the graphics pipeline is done in the Draw pro-
cess, and a new lightweight asynchronous disk reading process is
created to manage file system activities.

The second level cache represents each level of the mipmap
using an array of tiles. These tiles must be large enough to enable
maximum throughput from disk, but small enough to keep overall
paging latency low. We use sizes between 1282 and 10242 depend-
ing on disk configurations. For this second level cache to operate
as a real-time look-ahead cache, we load into parts of the cache
that are not currently needed by the underlying hardware. Thus
each cache level contains at least enough tiles to completely hold
the underlying clipmap level that is currently resident while
prefetching border tiles. With a ClipSize of 1024 and a tile size of
2562, the cache must be configured to be at least 6 by 6 tiles or
1536 by 1536 texels, as shown in Figure 10.

Due to memory alignment issues, low-level texture updates must
be implemented as individual downloads based on tile boundaries.
In Figure 10, the left drawing shows a minimal cache for one stack
level. This cache has already copied the texels in the ClipSize2 cen-
tral area down to the clipmap in texture memory. The cache has
also pre-fetched the minimal single-tile border of image tiles, the
“ready” area. The center illustration indicates that the ClipCenter
(the dot) has been moved up and to the right by half of a tile (128
texels in this case). What actions are implied by this recentering
action? First, the clipmap must be updated. This is done by access-
ing the border tiles above and to the right of the existing stack data.
The white square indicates the new clipmap area, and the nine
crosshatched rectangles are the texture downloads required to
update the hardware clipmap stack for this level. Multiple down-
loads are performed because it is infeasible to perform real-time
memory to memory copies to realign memory when overall texture
load rates are 270 MB per second. Once the clipmap layer is
updated, the main memory tile-cache must be roamed up and to the
right, by scheduling disk reads to retrieve the newly uncovered
tiles, indicated as the “page” area in the diagram. While the new
tiles are logically up and to the right, we store them at the bottom
and the left, using the same toroidal addressing used in the clipmap
itself—as in that case, unchanged data is never updated.

This main memory clipmap cache is very much a larger tiled ver-
sion of the underlying hardware representation. It has a section of
static pyramid levels and a section of cached roaming stack levels.
The biggest difference being that an external tile border is used for
paging in main memory and an internal InvalidBorder-sized region

serves the same purpose within the clipmap. Each cache roa
through its level of the full mipmap texture independently based
the level’s ClipCenter. Each cache level performs look-ahead p
ing, requesting disk reads for image tiles that are likely to b
loaded into the clipmap in the near future. Each level is responsi
for managing the corresponding level of the underlying hardwa
clipmap implementation: recentering the underlying hardwa
level and incrementally downloading the relevant texture data fro
its tiled cache.

To configure the main memory cache system, developers spe
information for each clipmap level. For stack levels, they provid
image cache configurations that describe how to load tiles (such
ansprintf format-string to convert tile row and column indices into
a full filesystem path name for each level), how big the cac
should be, how big the underlying hardware clipmap level is, a
other basic information. For pyramid levels, they simply provid
the static image. Global clipmap data is also provided, such as
ClipSize for the clipmap, the storage format of the texels, a
parameterization for load control.

7.2 Cache Centering Algorithms
In addition to the low and high level representations we ha

defined so far, there is still an important issue we have not yet d
cussed: how to decide which part of the image should be cach
We encourage developers to set the center directly in both
lower and higher-level software since the optimal place to cen
the cache is inherently application dependent. Some applicati
use narrow fields of view and thus look at data in the distanc
which is where the ClipCenter should be located. Other applic
tions, such as head-tracked ground-based virtual reality appli
tions, want to ensure that quick panning will not cause the clipm
cache to be exceeded, arguing for placing the ClipCenter at
viewer’s virtual foot position. Our higher-level software provide
utilities to automatically set the clipmap ClipCenter based on
variety of simple viewpoint projections and viewing frustum
related intersection calculations as a convenience in those ca
where default processing is appropriate.

7.3 Managing Filesystem Paging
The low-level clipmap representation provides fully determini

tic performance because it is updated with whatever texels
required before rendering begins. Unfortunately, this is not true
the second-level cache in main memory due to the vagaries of fi
system access in terms of both bandwidth and latency. Compa
to memory-to-graphics throughput of 200-450 MBytes/secon
individual disk bandwidths of 3-15 MBytes per second are ve
slow. This could lead to a situation where speedy eyepoint moti
exceeds the pace of second-level tile paging, causing the Effect
Size cache region to “stall” at the edge of a cache level awaiti
data from disk before being recentered. We must anticipate t
problem since we do not limit eyepoint speed, but we can avo
visual distraction should it occur.

The important realization is that the requested data is alwa
present in the clipmap, albeit at a coarser resolution than desir
since the top-most of the pyramid levels in the clipmap caches
entire image. We use the MaxTextureLOD feature already pres
in the hardware to disable render access to a hardware stack l
whenever updating a level requires unavailable data. The clipm
software system attempts to catch up to outstanding pag
requests, and will re-enable a level by changing the MaxTextu
LOD as soon as the main memory texture tile cache is up to da
Thus MaxTextureLOD converts the stack levels into a resoluti
bellows, causing the clipmap to always use the best available d
without ever waiting for tardy data. This makes it possible for clip
maps to allow arbitrary rates of eyepoint motion no matter wh

Stack Ready Recenter Page Destination

Figure 10: Tiled Main-Memory Image Cache

ion
ith
c-

on.
g

ser
e
.

be
r-
n-
ds

lu-
ey
ta-
m-
st
g,
ire

te-
ad
rays
se
s”
y

er-
pty
ol
late
-
il-

et
ide
n-
tion
is-

x-
n
-
ent
is

ed
nd
;

filesystem configuration is used. In underpowered systems it is
perfectly acceptable if the texture becomes slightly blurry when
the ClipCenter is moved through the data faster than the tiles can
be read. Recovery from this overload condition is automatic once
the data is available; the system downloads the level and tells the
hardware to incrementally fade that level back in by slowly chang-
ing the MaxTextureLOD over an interval of several frames.

To control latency in paging-limited cases, we provide a light-
weight process to optimize the contents of the disk read queues.
Without this the read queue could grow without bound when cache
levels make requests that the filesystem cannot service, causing the
system to get ever further behind. The queue manager process
orders tile read requests by priorities which are determined based
on the stack level issuing the request (with higher priorities for
coarser data) and on the estimated time until a tile will be needed.
The priorities of outstanding requests are asynchronously updated
by the cache software managing each level every frame and the
read manager thread sorts the disk read queue based on these
changing priorities, removing entries that are no longer relevant.
This priority sort limits the read queue size and minimizes latency
of read requests for more important tiles, thus ensuring that tiles
needed to update coarser levels are loaded and used sooner.

7.4 Managing Stack Level Updates
We now address load management issues in paging data from

main memory to texture hardware. Since memory-to-graphics
bandwidth is at a premium in immediate-mode graphics systems, it
is important to understand and control its expenditure. A typical
application might devote 75% of the throughput for sending geo-
metric information to the graphics subsystem, leaving 25% of the
16.67ms (60 Hz) frame time for incremental texture paging,
including both mipmaps and clipmaps. The time allocated for clip-
map updates may be less than the time needed to fully update a
clipmap because the center is moved a great distance requiring
many texels to be updated or because the time allowed for updates
is so little that even the smallest update may not be performed.
Since unwavering 60 Hz update rates are a fundamental goal of our
system, we must plan for and avoid these situations.

To control clipmap update duration we precisely estimate the
time required to perform the downloads for a given frame. A table
of the measured time for texture downloads of each size that could
potentially be performed based on clipmap and system configura-
tion is generated at system start-up. Then, as we schedule down-
loads, we start at the lowest (coarsest) cache level and work our
way up the cache levels one by one. The total projected time is
accumulated and updates are terminated when insufficient time
remains to load a complete level. Coarse LODs are updated first,
since they are both the most important and require the least band-
width. Finer levels are disabled using MaxTextureLOD if there is
insufficient time for the required updates.

We also expose the MaxTextureLOD parameter for explicit
coarse-grain adjustments to required download bandwidth. Since
each higher stack level requires four times the paging of the next
lower one, adjustment of maximum LOD has a powerful ability to
reduce overall paging time. The visual effect of coarsening the
MaxTextureLOD by one level is to remove the innermost of the
concentric rings of texture precision. Since this has a visually dis-
cernible effect, it must be gradually done over a few tens of frames
by fractionally changing the MaxTextureLOD until an entire stack
level is no longer in use, after which rendering and paging are dis-
abled for that level. This method is illustrated in the right-most col-
umn of Figure 11, where the inner resolution ring has been
removed by decreasing the MaxTextureLOD.

For fine-grain control of paging bandwidth, we use the Invalid-
Border control as described in §3.2.3 to reduce the area of texels

that must be updated in each stack level. Our implementat
allows the InvalidBorder to be adjusted on a per-frame basis w
little overhead. Increasing the InvalidBorder reduces the Effe
tiveArea, reducing the radius of each concentric band of precisi
This is illustrated at the bottom row of Figure 11, where renderin
with a larger InvalidBorder is seen to scale the Stack Levels clo
to the ClipCenter. Only the stack levels are modified by th
InvalidBorder, as indicated by the outer region in the left diagram

The load control mechanisms presented here have proven to
effective, allowing existing applications to integrate clipmaps vi
tualizing terabytes of filesystem backing store, maintaining co
stant 60 Hz real-time rendering rates irrespective of disk spee
and latencies.

7.5 High-Resolution Insets
High-resolution insets are regions of extra-high texture reso

tion embedded into a larger, lower-resolution texture image. Th
are important since applications often have areas within their da
base where higher-fidelity is needed. An example occurs in co
mercial flight simulators, where texture resolution at airports mu
be very high to support taxi, approach, and departure trainin
while the terrain areas traversed in flight between airports requ
more moderate texture resolution.

Our implementation supports insets as a side effect of the in
grated filesystem paging load control that constantly sorts tile re
requests. To implement insets, developers specify sparse tile ar
in the filesystem for each clip level. Sparse tile arrays are tho
where some or nearly all tiles are undefined, resulting in “island
of resolution in various portions of an otherwise empty tile arra
(near airports, for the example above). In this situation the high
level software uses the inset data when it can—skipping the em
regions automatically using the TextureMaxLOD load-contr
mechanism as it discovers that nonexistent tiles are perpetually
in arriving from the filesystem. The load control algorithm natu
rally falls back on coarser LODs when inset level data is not ava
able.

To allow insets to blend in smoothly, tiles containing the ins
texels must be surrounded by a border at least ClipSize texels w
using data magnified from the next lower level in a recursive ma
ner, a requirement easily met by automatic database construc
tools. This restriction exists because the decision to enable or d
able a clipmap level is made for the level in its entirety using Te
tureMaxLOD, and therefore partially valid cache levels—partly i
the inset region and partly outside of it—would normally be dis
abled. Providing this border ensures that the load-managem
algorithm will enable the entire level when any pixel of the inset
addressed.

8 IMPLEMENTATION RESULTS
We have implemented the clipmap rendering system describ

here. The implementation consists of low-level support for real a
virtual clipmaps within the InfiniteReality [3] graphics subsystem

InvalidBorder

Max
Texture

LOD

Decrease
Max LOD

Normal
Max LOD

Normal
Invalid
Border

Large
Invalid
Border

Figure 11: Visual Effect of Load Control

in
to

e to
ion
ata.
u-
il,

tage
ed

both
ll
ide

re
en-
nd
ve
een
f
ys
.

n
of
.

ic

ce

s-

J
r

ey,

p-

n
s,
special OpenGL clipmap control and virtualization extensions; and
support within the IRIS Performer [2] real-time graphics software
toolkit for clipmap virtualization, second-level tile caches, tile pag-
ing from the filesystem, and for automatic load-management con-
trols as described above.

In working with the system, developers find the results of using
the clipmap approach to be excellent. Real-time graphics applica-
tions can now use textures of any desired precision at full speed—
examples include planet-wide textures from satellite data, country
and continent scale visual simulation applications with centimeter
scale insets, architectural walkthrough applications showing
murals with minute brush strokes visible at close inspection, and
numerous advanced uses in government.

The image in Figure 12 shows an overhead view of a 81922 tex-
ture image of the Moffet Field Naval Air Station in Mountain
View, California rendered onto a single polygon. The colored
markers are diagnostic annotations indicating the extent of each
clipmap level. The EffectiveArea has been significantly reduced by
enlarging the InvalidBorder to make these concentric bands of pre-
cision easily visible.

The image in Figure 13 shows a very small portion of a 25m per
texel clipmap of the entire United States—the area shown here is
the southern half of the Yosemite National Park. That our approach
makes this single 170 GByte texture displayable at 60 Hertz with
an approximately 16 MByte clipmap cache is impressive; equally
so is the fact that the application being used need not know about
clipmaps—all clipmap definition, updating, load-management and
default ClipCenter selection happens automatically within IRIS
Performer.

9 CONCLUSIONS
We have developed a new texture representation—theclipmap—

a look-ahead cache configured to exploit insights about mipmap
rendering, spatial coherence, and object to texture space coordinate
mappings. This representation is simply parameterized and can be
implemented in hardware via small modifications to existing mip-
map rendering designs. It has been implemented in a system fea-
turing a fast system-to-graphics interface allowing real-time
update of clipmap caches. This system renders high quality images
in real-time from very large textures using relatively little texture
memory. The hardware supports virtualization for textures larger
than it can address directly. This approach is not only important for
representing textures of arbitrary scale. Equally important is that it
also liberates geometric modeling and level of detail decisions
from texture management concerns.

The guiding insights about mipmap utilization that made the

clipmap solution possible can be applied to related problems
computer graphics. Display resolution provides an upper bound
the amount of data needed in any rendering. It seems possibl
develop a system that stages geometric level-of-detail informat
for large databases similarly to the way clipmaps stage image d
If an adaptive rendering algorithm were defined to create contin
ous tessellations from partially specified geometric levels of deta
then the same look ahead cache notions could be used to s
geometry. At a system level, this approach has predetermin
throughputs and bandwidths that can be established to ensure
high fidelity and robust real-time behavior. In this way, the overa
data flow of large systems can be easily sized and tuned for a w
range of applications.

Since the original development of clipmaps and their hardwa
and software implementations, we have explored several ext
sions including 3D clipmaps, texture download optimizations, a
new inter-level texture blend modes. This work leads us to belie
that there is considerably more to be discovered. We have s
realism in real-time visual simulation revolutionized in the wake o
the introduction of clipmaps and we eagerly anticipate new wa
in which clipmaps can have this effect in other application areas

Acknowledgments
We would like to recognize Jim Foran for his original idea, Do

Hatch and Tom McReynolds of IRIS Performer, Mark Peercy
OpenGL and the technical marketing team for their contribution

References
[1] Cosman, Michael. Global Terrain Texture: Lowering the Cost. In Er

G. Monroe, editor,Proceedings of 1994 IMAGE VII Conference, pages
53-64. The IMAGE Society, 1994.

[2] Rohlf, John and James Helman. IRIS Performer: A High Performan
Multiprocessing Toolkit for Real-Time 3D Graphics. In Andrew
Glassner, editor,SIGGRAPH 94 Conference Proceedings. Annual
Conference Series, pages 381-394. ACM SIGGRAPH, Addison We
ley, July 1994. ISBN 0-89791-667-0.

[3] Montrym, John S, Daniel R Baum, David L Dignam and Christopher
Migdal. InfiniteReality: A Real-Time Graphics System. In Turne
Whitted, editor,SIGGRAPH 97 Conference Proceedings. Annual Con-
ference Series, pages 293-301. ACM SIGGRAPH, Addison Wesl
August 1997. ISBN 0-89791-896-7.

[4] Sanz-Pastor, Nacho and Luis Barcena. Computer Arts & Develo
ment, Madrid, Spain. Private communication.

[5] Walker, Chris, Nancy Cam, Jon Brandt and Phil Keslin. Image Visio
Library 3.0 Programming Guide. Silicon Graphics Computer System
1996.

[6] Williams, Lance. Pyramidal Parametrics. In Peter Tanner, editor,Com-
puter Graphics (SIGGRAPH 83 Conference Proceedings),volume 17,
pages 1-11. ACM SIGGRAPH, July 1983. ISBN 0-89791-109-1.

Figure 12: Concentric Resolution Bands

Figure 13: Yosemite Valley and Mono Lake

	The Clipmap: A Virtual Mipmap
	Abstract
	1 Introduction
	2 Previous Approaches
	3 The Clipmap Representation
	3.1 Observations about Mipmaps
	3.2 The Anatomy of a Clipmap
	3.2.1 Defining Clipmap Region with ClipSize
	3.2.2 Defining Clipmap Contents with ClipCenter
	3.2.3 Invalid Border for Parallel Update
	3.2.4 TextureOffset for Efficient Update

	3.3 Clipmap Storage Efficiency

	4 Updating Clipmaps
	4.1 Update Bandwidth Considerations

	5 Rendering with Clipmaps
	6 Virtual Clipmaps
	7 Dynamic Clipmap Management
	7.1 Main Memory as Second-Level Cache
	7.2 Cache Centering Algorithms
	7.3 Managing Filesystem Paging
	7.4 Managing Stack Level Updates
	7.5 High-Resolution Insets

	8 Implementation Results
	9 Conclusions
	Acknowledgments
	References

